
TOWARD PRODUCTIVITY IMPROVEMENTS IN PROGRAMMING LANGUAGES

THROUGH BEHAVIORAL ANALYTICS

by

Patrick Michael Daleiden

Master of Science - Computer Science

University of Nevada, Las Vegas

2016

Master of Business Administration - Finance and Accounting

University of Chicago, Chicago, IL

1993

Bachelor of Arts - Economics

University of Notre Dame, Notre Dame, IN

1990

A dissertation submitted in partial fulfillment of

the requirements for the

Doctor of Philosophy – Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2020



c� Patrick Michael Daleiden, 2020

All Rights Reserved



The Graduate College

We recommend the dissertation prepared under our supervision by

Patrick Michael Daleiden

entitled

Toward Productivity Improvements in Programming Languages
through Behavioral Analytics

be accepted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy – Computer Science
Department of Computer Science

Andreas Stefik, Ph.D., Committee Chair

Laxmi Gewali, Ph.D., Committee Member

John Minor, Ph.D., Committee Member

Angelos Yfantis, Ph.D., Committee Member

Kendall Hartley, Ph.D., Graduate College Representative

Kathryn Hausbeck Korgan, Ph.D., Graduate College Dean

May 2020

ii



Abstract

Computer science knowledge and skills have become foundational for success in virtually every professional

field. As such, productivity in programming and computer science education is of paramount economic

and strategic importance for innovation, employment and economic growth. Much of the research around

productivity and computer science education has centered around improving notoriously di�cult compiler

error messages, with a noted surge in new studies in the last decade. In developing an original research

plan for this area, this dissertation begins with an examination of the Case for New Instrumentation, draw-

ing inspiration from automated data mining innovations and corporate marketing techniques in behavioral

analytics as a model for understanding and prediction of human behavior. This paper then develops and

explores techniques for automated measurement of programmer behavior based on token level lexical analysis

of computer code. The techniques are applied in two empirical studies on parallel programming tasks with

88 and 91 student participants from the University of Nevada, Las Vegas as well as 108,110 programs from

a database code repository. In the first study, through a re-analysis of previously captured data, the token

accuracy mapping technique provided direct insight into the root cause for observed performance di↵erences

comparing thread-based vs. process-oriented parallel programming paradigms. In the second study com-

paring two approaches to GPU programming at di↵erent levels of abstraction, we found that students who

completed programming tasks in the CUDA paradigm (considered a lower level abstraction) performed at

least equal to or better than students using the Thrust library (a higher level of abstraction) across four

di↵erent abstraction tests. The code repository of programs with compiler errors was gathered from an

online programming interface on curriculum pages available in the Quorum language (quorumlanguage.com)

for Code.org’s Hour of Code, Quorum’s Common Core-mapped curriculum, activities from Girls Who Code

and curriculum for Skynet Junior Scholars for a National Science Foundation funded grant entitled Inno-

vators Developing Accessible Tools for Astronomy (IDATA). A key contribution of this research project is

the development of a novel approach to compiler error categorization and hint generation based on token

patterns called the Token Signature Technique. Token Signature analysis occurs as a post-processing step

after a compilation pass with an ANTLR LL* parser triggers and categorizes an error. In this project, we

use this technique to i.) further categorize and measure the root causes of the most common compiler errors

in the Quorum database and then ii.) serve as an analysis tool for the development of a rules engine for
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enhancing compiler errors and providing live hint suggestions to programmers. The observed error patterns

both in the overall error code categories in the Quorum database and in the specific token signatures within

each error code category show error concentration patterns similar to other compiler error studies of the Java

and Python programming languages, suggesting a potentially high impact of automated error messages and

hints based on this technique. The automated nature of token signature analysis also lends itself to future

development with sophisticated data mining technologies in the areas of machine learning, search, artificial

intelligence, databases and statistics.
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Chapter 1

Introduction

The Digital Revolution [Sch17] which began during the 20th century has made technology ubiquitous in our

daily lives. The changes that have occurred in our transition to the Information Age have fundamentally

a↵ected the global economy. The U.S. Department of Commerce (USDOC) recently stated that economic

growth and competitiveness are increasingly tied to the digital economy as the number of individuals with

access to the internet has risen from roughly 45 million in 1995 to over 3 billion in 2014 [Dav17]. In 2016, a

USDOC report found that intellectual property (IP) intensive industries support at least 45 million jobs (30%

of all U.S. employment) and contribute more than $6 trillion dollars of U.S. gross domestic product (38%

of total GDP). Furthermore, workers in IP-intensive industries earn approximately 46% more than workers

in non-IP-intensive industries, continuing an upward trend over the last 25 years [U.S17b]. In 2017, a BNY

Mellon sponsored report authored by a group of industry experts in computer science education [PZS+17]

explained that because computing had profoundly impacted our lives, it is important that students develop

competency as generators of digital resources, not just users. Among other things, the report concluded

that computer science knowledge and skills have become foundational and that computer science is a central

component of innovation, economic growth and employment.

Despite all of this, however, computer science education is not meeting the demands of the economy. In a

report of a special commission on Computer Science Education and Information Technology of the Southern

Region Education Board, the commission claimed that computational thinking skills and knowledge of

computer science are required in nearly all career fields, but lamented that the nation is not on track to meet

labor market demand for computing resources [SGA+16]. Code.org a�rms the labor shortage with numbers,

claiming there are currently 486,686 open computing jobs nationwide, but that last year only 42,969 computer

science students graduated into the workforce [cod17]. Part of the reason for this shortage is that only 58% of

high schools o↵er a computer science course and of those that do only 47% teach programming, so only about

1 in 4 o↵er an opportunity to learn a key element of computer science required in the workplace [Goo17].
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There has been movement in recent years to establish national standards for computer science education such

as AP Computer Science Principals [The17] and the K-12 framework [k1217]. President Obama attempted

to address this issue and recognized the shift toward a digital economy in his 2016 State of the Union in

creating the Computer Science for All initiative [Oba17] which proposed $4 billion in funding for states to

increase computer science education in K-12 and $135 million in funding for the National Science Foundation.

Even with co-ordinated statewide and federal programs in conjunction with technology industry sponsor-

ships to enhance the quantity of computer science education, however, we are still left with the issue of the

quality of education. Computational thinking and computer programming are considered cognitively di�cult

tasks [WK14] and college level introductory computer science courses often have attrition and failure rates of

20% to 50% [Yue07]. Introductory students are generally confused by basic syntax in computer programming

languages [KK03] as well as compiler error messages [DLRT12]. Important skills like debugging are both

di�cult for novices to learn [MLM+08] and for instructors to teach [MFL+08]. Integrated development envi-

ronments can assist beginners in learning programming but they can also overwhelm them. [SDM+03, RT05]

The problem is compounded by the prevalence of these types of problems across languages [SS13]. Part of the

solution to the problem is to understand more about student errors in order to improve instruction [SPBK88]

but another part is to improve programming languages themselves.

The problem of programmer productivity also goes beyond just novice instruction. An internal Google

study [SSE+14] on over 26 million build errors made by 18,000 of their own profesional software developers

found failure rates of 28% to 38% (depending on the language used). Considering that the average developer

built their code 7 to 10 times per day according to Google’s statistics, if we assume that on average 5 minutes

of every hour was spent on building code and one third of those builds failed, about 2.8% of their time was

unproductive. At an annual salary of $100,080 (the U.S. Bureau of Labor Statistics average annual salary for

software developers and programmers in 2016 [U.S17a]), the lost productivity of these 18,000 developers was

in the neighborhood of $50 million that year. At a national level, there were 1,604,570 software developers

and programmers in the 2016 survey [U.S17a], which translates to over $4.4 billion in identifiable losses

from just one part of the problem. The same productivity problem also exists for scientists and academic

researchers, as highlighted by a multi-disciplinary team at Berkeley studying parallel computing [ABC+06].

Lost labor costs only tell part of the story in this area though, because the pace of scientific discovery

is a↵ected and the real cost is an opportunity cost. In our increasingly technology-based world, research

scientists’ productivity is directly tied to their ability to utilize computers e�ciently.

This research proposal attempts to address the problem of programmer productivity by examining the core

issues of programmer behavior and language design. It is based on the development of a behavioral analytics

suite to enable researchers to more fully understand and measure human factors impacts of programming

language and library design decisions on software developers in order to achieve the ultimate goal of helping

to make programmers more productive. Multidisciplinary research work exploring the psychological impact
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of di↵erent computer languages on science and problem solving is already underway based on the established

hypothesis that di↵erent spoken languages can influence thinking in certain directions [Uni17a]. Extending

the study of computer programming using a behavior analytics approach seems like a natural fit.

The concept of behavioral analytics is relatively new, but is becoming formalized and is in wide use by cor-

porate interests seeking to maximize profits [IBM13] and for data security and anomaly detection [CA 17].

Cao [Cao08] explained that behavioral data is increasingly examined for pattern analysis and business in-

telligence because of its predictive capability, citing usage examples in customer relationship management,

social computing, fraud detection, event analysis, outlier detection and group decision making. Behavioral

analytics is an advancement to traditional transactional data analysis in that it takes advantage of new data

points that are now available through digital interaction, such as mouse clicks on a website with timestamps

and browsing history in order to gain insight into and influence over consumer intent. These behaviors are

analyzed using pattern recognition algorithms, machine learning techniques and artificial intelligence and

compared to databases of other consumer behavior with known outcomes. The result of a successful behav-

ioral analytics program is that a business will understand its customers better and can tailor its services to

maximize revenue.

Although the metrics will be di↵erent, this research plan proposes to borrow this concept and apply it

to the study of computer programming. The proposal is based on a series of programming studies and

code repository analysis where programmer output and behavior is measured empirically in randomized

controlled trials where possible. During these studies, our testing platform captures various forms of data

generated while participants complete programming tasks, including code snapshots, compiler error messages,

and timestamps. The data will be analyzed collectively using automated machine learning algorithms for

pattern recognition. Additionally the code samples will be broken down into token streams and analyzed

with automated sequence alignment algorithms borrowed from the field of bioinformatics. Finally, data

visualization elements will be developed for visual monitoring and pattern recognition. The overall objective

is to identify programming behavior patterns in overall productivity, debugging and program correctness in

order to predict areas of di�culty and strength. These patterns can ultimately be used to inform teaching,

to improve language design and to increase programmer productivity.

The research plan builds on the testing platform and automated token alignment work previously complete

in a study of parallel programming paradigms [Dal16]. In terms of software development for this toolkit,

the testing platform itself is being enhanced to capture additional data as well as to provide new function-

ality for more flexible language studies. The automated token alignment algorithms are being improved

to enhance accuracy and consistency and additional algorithms and settings will be explored. Additional

behavioral analytics will be applied and developed including machine learning techniques for pattern recogni-

tion. A visualization toolkit will be developed for reporting purposes and qualitative assessment for pattern

recognition.
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The design philosophy of this analytics toolkit is to develop empirical measurement and reporting capabilities

for use by the programming language research community. The ultimate goal of this research is to make

programming easier, to make programmers better through improved accuracy and program correctness and

to improve programmer training and learning. In the future, this research work could provide the foundation

for a set of pedagogical tools to assist programmers not only at the novice level but also at advanced levels

with more di�cult concepts, like parallel programming. Although it is beyond the scope of this project,

the intention is to create a research basis that could be built on to provide improved tool support for

programmers through a real time token mapping-based pedagogical tool to provide IDE editor hints or

debugging suggestions.
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Chapter 2

Research Justification

2.1 The Case for New Instrumentation

The empirical study of programming languages is a relatively young, but growing area of computer science

research [Kai15]. The empirical studies that have been done so far in this area use basic comparison metrics

such as time to completion [USH+16], time to fix [DLRT12], number of errors [BA17], classification of types

of errors [RHW10a] or even softer qualitative observations [TCAL13]. These metrics all have value in a

researcher’s tool kit and they represent a logical place to start, but computer programming is a complex

task and more instrumentation is needed for measurement and quantification. Additional information about

programmer behavior and intent (both statically and over time) could significantly enhance a researcher’s

understanding of the human factors impacts of programming language design decisions. A data set of

patterns of behavior in errors, error correction, successful solutions, library usage, best practices and other

areas could be analyzed to learn much more than we can learn from basic metrics. Additionally, these

datasets could be used with machine learning techniques to develop predictive models that could be used to

learn about programmer intent.

In addition to providing more detailed information on problem areas than existing study methodologies

(which may only measure time to completion, for example, instead of the nature of the problem) the lan-

guage analytics toolkit could allow us to learn, from another perspective, how people go about programming,

problem solving, debugging and even learning programming. For example, we can use these tools to empiri-

cally measure how people approach the implementation of a flow control construct and try to correlate those

patterns to successful and unsuccessful results. We can use the tools to explore areas where we can speed up

programming and provide more contextual help in concepts similar to code completion. We can use token

string similarity to match and rank potential constructs from databases to correct bugs or provide library

support. We can analyze code to identify possible missing fragments used commonly by others in the same
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way Amazon can suggest that if you just bought item A, you might also want item B, C and D because

that is what other consumers bought. Amazon is a well known example of using behavioral data to make

product recommendations [IBM13]. The freedom from the strict requirements of parsing provide many new

avenues to pursue.

2.1.1 The Syntax Problem

The introduction in Becker [Bec16] discusses over forty years of research in syntax and compiler errors and

laments the still common themes throughout. The issues consistently span most languages and certainly

includes the most popular languages. In 1976, Wexelblast [Wex76] satirically highlighted how malfeasant

language designers could make programming as di�cult as possible by listing a series of maxims of bad

language design which were common in many languages of the time. Although he was highlighting problems

in Fortran, PL/I and Algol68 then, many of these issues continue in modern languages today. In the 1980’s,

Sleeman [SPBK88] summarized and quantified the errors they observed in teaching Pascal at Stanford to

introductory students with similar errors. In the 1990s, Schorsch [Sch95] developed corrective tools as a

teaching aid to solve the same types of Pascal errors at the United States Air Force Academy. Contempora-

neously, Freund and Robers [FR96] at Stanford developed a tool to help with similar ANSI C syntax errors

for beginners. In the 2000’s, researchers were working on resolving the same novice problems yet again in

Java with Flowers [FCJ04] at the United States Miltary Academy (West Point) and Hristova [HMRM03]

at Bryn Mawr College. Many more studies confirmed the same problems and in the 2010’s we even saw

a comparison study by Stefik et al. [SSSS11] of basic syntax errors in Perl to a randomly generated non-

sense control language which observed no evidence that Perl was superior. In 2017, studies continue to find

and document the same problems and the limited impacts of our approaches as highlighted by Prather et

al. [PPM+17]

One approach to solving this problem is to provide programmers with enhanced compiler error messages

although the evidence shows mixed results on their e↵ectiveness. Becker [Bec16] showed improvements in 9

out of 15 of the most common errors and Denny [DLRC14] showed no improvements over a control group,

although these results su↵er from small sample sizes, which impede statistical significance calculations. Petit

et al. [PHG17], motivated by the inconsistency of these two results, modified an automated assessment tool

they use called Athene to incorporate this research and run their own study over four semesters in a C++

course and found no impact from the enhanced compiler messages. Prather et al. [PPM+17] reviewed the

inconsistent results of various studies and identified two possible causes: 1.) that students do not read the

enhanced compiler messages and 2.) that the messages are properly designed but students do not understand

them in situations of high cognitive load while debugging. In any event, despite focused academic research

on the topic and so many attempts to solve the problem, there is still no compiler error enhancement tool

in wide use, so the syntax barrier persists.
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Enhanced compiler message studies by Becker [Bec16], Denny et al. [DLRC14] and Pettit et al. [PHG17]

follow a similar format: i.) researchers categorize common errors and then ii.) develop techniques and

approaches for assisting a programmer to fix an error more e�ciently by creating some tool for enhancing

messages or identifying errors or providing feedback and then iii.) compare student performance before and

after the introduction of the tool. This is a valid and useful research approach, but with a language analytics

approach we can create the capability to attack the problem closer to the root by developing a research

toolkit to assist in language design itself to try to avoid or minimize the syntax problems in the first place.

It is time for a fresh approach to these very well documented issues so that researchers can learn more about

the underlying causes of what is going on so that a solution can be found.

2.1.2 Illustrative Basic Example

As an illustrative example, consider that the six compiler error studies examined by Becker [Bec16] have

provided corroborating evidence that unbalanced parenthesis, curly braces, square brackets and quotation

marks are the among the most common syntax errors. Compilers have a di�cult time zeroing in on the

particular item that is unbalanced because of the nature of parsing. As an aside, integrated development

environments often auto-complete the right token when you type the left token either as a convenience or

reminder to keep them in balance. Using a token matching approach and observing a programmer’s behavior

over time with a particular token could shed light on how these errors arise. For example, if a programmer

habitually types (or has auto completed) the closing token before filling in the body of the code block, we

might be able to determine how likely errors are to arise and then make predictive suggestions at a helpful

time. It is possible other syntax or logic errors are correlated with common mistakes also and a token

mapping may help predict those.

Consider a JQuery AJAX method in JavaScript with an anonymous callback function that has the basic

structure:

$.post(url, data, callback);

In practice, this type of method can be fleshed out further inside a button callback where keeping track of

opening and closing curly braces and parenthesis is more complicated, not to mention the commas separating

the parameters and the semicolons at the end of the lines. The code readability may also be a↵ected

by optional or non-existent indentation as well. Systematically observing and measuring a programmer’s

behavior while she is programming could lead to insight in patterns that correlate to di↵erent syntax errors

and would be di�cult or impossible to observe with other measurement and assessment tools.

$.("button").click(function(){

$.post(

url,
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{

...

},

function(response) {

...

});

});

A missing or mismatched closing token in this case would be very di�cult to identify through a standard

compiler error, which would likely just get to the end and realize a token was missing somewhere (depending

on which token was missing). With a context informed approach with token mapping, additional information

would be available and behavior analytics could make a specific recommendation. Additionally, this type of

platform could measure the frequency of the specific token errors and identify patterns. For example, it is

possible that users are confused by the ordering of the curly brace and parenthesis at the end, but not the

curly braces embedded in the data section, or possibly they just omit the closing parenthesis or semicolon.

With a compiler alone, the error can not be specifically identified in this more complex case.

2.2 Language Productivity Analytics Platform

The result of this research project will be the development of a suite of tools and methodologies intended to

be generally useful to the programming language research community. The platform is intended to provide

enhanced information about programmer behavior so that researchers can provide informed and empirically

supported recommendations to language designers about language and library design.

We will explore the application of various established pattern matching algorithms, local and global sequence

alignment algorithms, string similarity algorithms and ranking algorithms to determine which techniques can

allow us to best predict and identify programmer intent. In our algorithm research and analysis phase we will

be cognizant of and examine the computational complexity of the pattern matching techniques to evaluate the

potential for development of real time tools that can be applied inside an integrated development environment

or in error messages to provide assistive information to a programmer for error avoidance, debugging or

learning.

2.2.1 Token Analysis and Mapping

A key component of the analytics toolkit will be the further development of the token analysis and mapping

methodology originally created by Stefik and Siebert [SS13] to analyze syntax accuracy. I extended and

automated the methodology in my Masters Thesis [Dal16] using the Needleman-Wunsch sequence alignment

algorithm created to compare DNA sequence similarity. Originally called Token Accuracy Maps, the token

mapping technique compared a participant’s code submission for a given task to a particular answer on a
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) -42 -39 -36 -33 -30 -29 -26 -25 -24 -23 -20 -19 -16 -13 -10 -7 -4 -1 0 1 2

end -44 -41 -38 -35 -32 -31 -28 -27 -26 -25 -22 -19 -18 -15 -12 -9 -6 -3 0 1 2

end -46 -43 -40 -37 -34 -33 -30 -29 -28 -27 -24 -21 -20 -17 -14 -11 -8 -5 -2 1 2

end -48 -45 -42 -39 -36 -35 -32 -31 -30 -29 -26 -23 -22 -19 -16 -13 -10 -7 -4 -1 2

Figure 2.1: Token Based Sequence Alignment

token by token basis after alignment. The token alignments were scored individually and then aggregated

to provide overall accuracy scores as well as token level correctness comparisons. The empirical data in

the form of an accuracy score for a participant for each task provided an objective criteria to run statistical

analysis. Figure 2.1 provides a visual example of the token sequence alignment using the Needleman-Wunsch

algorithm where the correct answer tokens are displayed along the y-axis and the participant response tokens

on the x-axis. Figure 2.2 depicts the resulting scored alignment on a token by token level.

In using the token accuracy map approach to measure the results of a study comparing process-oriented

parallel programming to a threads-based paradigm, we discovered that although the token accuracy maps

can give us useful information about programmer accuracy, they have limitations. A particular limitation of

concern is in scoring alternate semantically correct solutions. In our experiment, we compared the participant

responses to a particular code solution. The first type of problem can occur with simple syntax di↵erences

between a response and the solution, such as variable names or non-material order variation. These can be
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1 class 63 class 63 1
2 Main 67 Main 67 1
3 action 35 action 35 1
4 F 67 F 67 1
5 - 0 output 1 0
6 integer 37 "hello" 68 0
7 a 67 end 62 0
8 = 46 action 35 0
9 1 65 G 67 0

10 output 1 output 1 1
11 a 67 "world" 68 0
12 end 62 end 62 1
13 action 35 action 35 1
14 Main 67 Main 67 1
15 concurrent 8 concurrent 8 1
16 F 67 F 67 1
17 ( 58 ( 58 1
18 ) 59 ) 59 1
19 - 0 G 67 0
20 - 0 ( 58 0
21 - 0 ) 59 0
22 end 62 end 62 1
23 end 62 end 62 1
24 end 62 end 62 1
25 ==
26 sum 15
27 count 24
28 score 62.5%
29

Figure 2.2: Optimal Token Alignment of Response to Solution

fairly easily addressed through manual inspection and a comparison to a di↵erent valid solution or a manual

reordering or renaming of the participant response.

The second type of problem is where the participant solves the problem in the task in a semantically correct,

but alternative manner to the solution code. This situation could be handled by manually categorizing

responses into groups and generating correct solutions for each approach. An overall accuracy score would

still be valid in this case, however the token accuracy comparison would only be valid within the group. In

our first experiment, our manual inspection did not reveal this to be an issue in any of the responses, most

likely due to the specificity of the instructions and code samples provided, however in a follow on study on

enum the participant responses were so di↵erent that an overall accuracy score using token mapping was

meaningless.

We have found that the token mapping approach to analyzing participant responses in programming language

studies has provided additional valuable unintended information on programming languages beyond the

intended scope of the studies. For example, in the parallel paradigm experiment referenced above, we

found that the repeat loop construct for Quorum had an identifiable and quantifiable error pattern. In an

indefinite repeat loop in both paradigm groups, the token “true” used in the looping condition had unusually

low accuracy scores in both groups (4.6% and 4.8%). In a manual inspection of the cause, we found that

the code samples given as a learning and reference device to the participants (who were all novice Quorum

users) did not contain this exact structure, so the participants were left to guess at an intuitive solution

for themselves. It suggests a problem with the existing Quorum repeat constructs that warrants further

examination for the language designers. This finding has nothing to do with this experiment, but it points to
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the usefulness of this approach to provide information that would not be gathered by standard measurement

tools like timing data, interviews or error examination. Armed with this experience, we will look to develop

capability to do this type of meta analysis across experiments on localized language constructs.

2.2.2 Toolkit Components and Extensions

Through the application of additional algorithms from bio-informatics and natural language processing to

the token streams, I will attempt to develop novel ways to measure how people program, what mistakes

they make and what patterns they exhibit for fixing mistakes and finding bugs. By matching token patterns

in user programs to correct (or incorrect) patterns at micro and macro levels throughout the programming

process using snapshots collected in the testing environment, I hope to identify and correlate patterns of

behavior to generate predictions. Using behavioral analytics techniques I plan to use token mapping to make

educated guesses at programmer intent to provide information beyond what a compiler can determine or

what we can empirically measure with existing research tools. In the studies our lab has already conducted,

we have discovered that we can learn more about what a programmer may be trying to do by looking at token

patterns and accuracy comparisons than just at errors or timings. We will seek now to expand our analysis

toolkit with new algorithms and visualization techniques with the goal of developing better instrumentation

for programming language research.

I will also extend the basic token mapping methodology to use in analysis over time comparisons. The

snapshot system in our testing environment will be used to examine not just static patterns but patterns

as they develop over time to enable a type of automated observational study. Looking at di↵s between

periods, we can identify active areas and active tokens. Comparing this activity to compile attempts and

errors may yield information about successful and unsuccessful programming behaviors as well as patterns

of learning and strategies for problem solving and debugging. An analysis over time approach is similar in

concept to and would provide some benefits of a think aloud study protocol, although, it is not a direct

substitute because we would not capture subjects explicit reporting of their thought patterns. We could

gather sequencing information of behavior at a token level and use our other tools to generate hypothesis

about intent. Additionally, the automated nature of our analysis could compare the behavior against a

database of others to identify and predict patterns.

Finally we will develop a set of reporting tools, including both statistical evaluation and visualization tools

for use by the programming language research community. The statistical evaluation tools will look at

quantifiable metrics to examine and measure aspects of programmer behavior. The goal of the tools will be to

provide empirical information to identify problem areas in programming language design. The visualization

tools will be less empirical and more assistive so that researchers can identify patterns and comprehend

scopes through visual representations of programmers’ behavior.
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2.3 Contribution of a Language Analytics Platform

2.3.1 Limitations of Compiler Error Research

Compiler errors are studied by researchers because they provide valuable information about the types and

nature of programming mistakes and represent an area of common problems [KK03]. They can also be

quantified and counted and can therefore be used to compare di↵erent paradigms and languages. The

empirical analysis of compiler errors along with attempts to provide better error information to programmers

have inspired numerous researchers to explore various techniques improve programming behavior.

Compiler errors are inherently limited, however, because they can only provide a static code analysis that

is generated by some failure to parse the programmer’s code. A compiler is constrained to identifying and

interpreting what it was expecting. It cannot precisely identify the specific point of certain types of common

errors, only the point of failure. Compilers can be built to be tolerant of errors and resume parsing, but

errors tend to cascade after even a single error and subsequent errors can bear less and less resemblance to

the actual cause. Basic errors can be enhanced to a certain degree, but a compiler has no ability to guess at

a programmer’s intent, so there is also an inherent limit on this approach to improving programming.

Researchers have generally identified through studies of the most common syntax errors [KK03, DLRC14,

DLRT12, Bec16, BA17] that syntax errors disproportionately a↵ect novices both in quantity and time to

fix [BA17]. A common approach to providing more help to these novices is to provide enhanced compiler

error messages to address shortcomings of basic messages in properly identifying a specific syntax error and

assisting novices in finding solutions quickly.

In examining enhanced compiler messaging research, I found several examples of author-cited limitations and

threats to validity of parsing and other approaches they have taken in providing enhanced error messages

which could be improved with a language analytics platform through a fresh perspective and further infor-

mation on many of the syntax errors targeted by enhanced compiler messages. This information could both

further enhance our understanding of the human factors impact of these messages and allow us to develop

even more targeted enhanced messages.

Denny et al. [DLRC14] point out the weakness of a compiler’s ability to identify certain types of syntax

errors without more information on the context of the error. The authors used a static analysis tool with

regular expressions to identify and classify some of these errors in their system to provide enhanced compiler

messages. A token mapping approach would be more flexible and accurate in the errors identified, which are

limited by the capability of regular expressions and expected responses.

Kery et al. [KLGM16] acknowledge that their AST dataset was limited because of the di�culty of determining

which exceptions are possible in a particular try block. A token mapping and language analytics approach
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could provide more information on the possible exceptions identified by the authors through the mapping of

programmer code against a predetermined data set of best practice handling blocks for particular calls.

Brown and Altadmri [BA17] identifies the most commonly occurring error in an analysis of two years of

compiler submissions and errors in their Blackbox dataset (1,861,627 occurrences vs 1,034,788 for the second

most common error) as: Unbalanced parentheses, curly or square brackets and quotation marks, or using

these di↵erent symbols interchangeably. This error category includes at least five di↵erent issues, including

unbalanced parenthesis (missing), unbalanced curly braces (missing), unbalanced square brackets (missing),

unbalanced quotation marks (missing), OR using these interchangeably with each other. The context of

these errors could be completely di↵erent and imply di↵erent types of programmer intent as they could stem

from di↵erent problems. A token mapping approach could determine the specific nature of this error which

could be used to provide information on the programmer’s intent or ability to correct the mistake.

Brown and Altadmri [BA17] point out that not all mistakes cause a compiler error, like using “=” instead

of “==”. Brown highlights that the time to fix is higher for these types of errors because programmers do

not necessarily realize they even exist. A token mapping approach could identify many of these errors that

do not cause a compiler error, especially for high time to fix errors.

Brown and Altadmri [BA17] acknowledge that their automated error detection code can give false positives

or false negatives in the case of unparseable code where they can not tell if the error has been fixed. A token

mapping approach might increase the accuracy of the automated error detection code used by the authors

by more specifically identifying and matching the specific errors. Behavioral analytic data may also provide

predictive information to enabled educated guessing of typographical errors a programmer might have made.

2.3.2 Limitations of Language Research Methods

Programming language research aside from compiler error messages also su↵ers from limitations which could

be relaxed or resolved with the language analytics platform. Following is a sampling of additional author-

cited limitations accompanied by a brief discussion of how the issue could be overcome.

Denny et al. [DLRTH11b] documented the high prevalence of syntax errors among novices in programming

and like Kummerfeld and Kay [KK03], pointed out that until the syntax errors in code are resolved, the

programmer can not possibly even receive feedback on any logic areas. So while studying code submissions

provides valuable insight into what mistakes novice programmers are making, there are severe limitations in

understanding other issues that might be present and important patterns, behaviors or insights are being

overlooked. This syntax wall could be lowered with language analytics and token mapping tools not only by

assisting with syntax error correction, but in the early identification of non-syntax type errors that could be

identified before a compiler can fully parse a programmer’s code.
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Denny et al. [DLRTH11a] highlights that there are generally multiple solutions to a problem. In their system,

students were shown all passing correct answers after they solved the problem from a database developed

by student submissions. This multiple solution concept could be enhanced by an automated behavioral and

token analytics approach mining a database of correct and alternative solutions to find best matches.

Sleeman et al. [SPBK88] highlights that a major omission with many research studies on programming

and programming errors is that they do not determine the nature of the errors associated with various

constructs. Their response was to ascertain this information through structured interviews with students

who had problems. This structured interview approach could clearly provide a certain type of additional

information on a small study, but because of its time-intensive nature, it would not scale to levels such as the

Blackbox dataset [BKMU14]. Some of the logic errors that the authors documented, such as semantically

constrained reads, declaration order confusion, loop logic and scope errors could be identified by an automated

analytics approach through matching token streams to incorrect solutions.

In their work evaluating the time to fix di↵erent types of syntax errors, Denny et al. [DLRT12] cite the

following threat to the validity of their study results: if a student submission contains multiple errors, they

do not know the student’s strategy for correcting those errors (i.e. if the student attempts to fix all errors

at once or one at a time). They attempt to investigate this by considering a subset of the data with only a

single error message. This approach to identify student strategies is a valid good faith attempt to discover

intent, however, a time-based behavioral and token analytics approach could identify the di↵erences from one

submission to another that would provide an empirical indication of what the programmer actually did, from

which a researcher could draw inferences about what the programmers was attempting to fix specifically.

In the static code analyzer developed by Schorsch [Sch95] as teaching aide for novice programming students

in Pascal, he mentions an example of a limitation of his pre-compiler approach in discovering certain types

of logic errors. In a situation where evaluating whether a procedure parameter should be an OUT parameter

or not, his program can not determine whether the parameter value is needed in the calling program because

the purpose of the algorithm can not be determined statically. While the problem of identifying a purpose

for an algorithm is di�cult, it could be improved by a language analytics approach which could match the

identifier in the calling code with its future usage in the remaining code and make a reasonable assumption

about the intent of the programmer and purpose of the algorithm.

Kummerfeld and Kay [KK03] noted that they observed that students sometimes made “erratic alterations”

to their code when they got stuck and tried to experiment to fix syntax errors, which they point out is

consistent with other studies which had similar findings of “tinkering.” This type of behavior is very di�cult

to identify empirically because there often is not specific tie to the last observed error. The erratic alteration

issue may be manually observable first hand in a small 6 person study like they performed, but on a larger

scale an automated language analytics approach could do a much more thorough job of identifying these

situations.
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2.3.3 Case in Point: Coding Practices

One example of how this may be applied to an identified problem area is exception handling. Kery, et

al. [KLGM16] found empirical evidence of what they considered widespread poor programming practices

in exception handling through a large scale code repository analysis of over 11.6 million Java try/catch

exception handling blocks in public code repositories. The study documented the common practice of using

minimal or empty handlers and the frequent use of Log, Print and Return statements in catch blocks. They

also found that programmers tended to locally handle an exception or catch everything with Exception

instead of propagating it by throwing an exception to the full program scope. The authors call for improved

tool support to address the prevalent bad programming practice they documented in exception handling code.

Good programming practice recommends that exceptions are sanitized to remove confidential information,

like a filepath in an IOException or debugging information like a stack trace or information derived from

caller inputs. [Ora17] Re-casting, in addition to purging certain information, is an important mechanism to

hide implementation details and maintain abstraction.

Although there is support in Eclipse to provide assistance with aspects of this particular problem, it could

be extended with token mapping. A token mapping tool could be used to identify bad practice and make

suggestions for appropriate handling, re-casting and propagation techniques. It could identify an exception

handling block and by examining the contents of the try block, provide an optimal mapping to best practice

code and use the missing tokens to suggest a code structure for the catch. For example, a call to open a

file in a try could check to see that an IOEception is handled in the catch. Security could be enhanced by

checking the code further for sanitization in that case.

2.3.4 Case In Point: C++17

C++ is an International Standards Organization (ISO) standard which has been and continues to be revised

periodically by committee. The next version of C++, C++17 reached the draft stage in March 2017 by

unanimous approval with the final standard excepted before the end of 2017. The new standard has dozens

of new features, modifications and deprecations. Since C++ is prevalent in systems programming, these

changes potentially a↵ect millions of programmers worldwide. Impacts include the cost of implementation

of changes in various compilers, training programmers to know and use new features, retroactive adjustment

of working code in cases where features changed and other similar costs.

Although the changes are debated publicly by committee, the lack of empirical study of the impact of

proposed feature changes is like the United States Congress voting on a bill that has not been scored by the

independent Congressional Budget O�ce. Better information on these language design decisions is necessary

and should be a responsibility of the community before implementation. Many of the features could be tested

simply with token based approaches to examine alternatives. For example, is for each n the best and most

intuitive way to execute a parallel execution of a particular for loop or is there a better way?
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2.4 Implications for Teaching and Learning

Implementing best teaching practices for computer programming requires knowledge of common errors.

Denny et al. [DLRT12] claims “as educators, the more we understand about the nature of these errors and how

students respond to them, the more e↵ective our teaching can be.” They demonstrate how their experimental

results can lead to the conclusion that certain teaching interventions should be made to target specific

situations for di↵erent types of syntax errors. Sleeman et al. [SPBK88] make the claim that understanding

more about student syntax errors should serve an important role in improving programming instruction as

well as providing insight into how students learn complex skills generally.

Kummerfeld and Kay [KK03] pointed out that syntax errors are one of the biggest barriers for novices and

other researchers have a�rmed that view [DLRC14, DLRT12, FCJ04, Bec16, SS13]. This is particularly

problematic because fixing syntax errors is the first step in debugging and until a programmer can resolve

any syntax problems and compile their code, they can not get any feedback on any logical issues that might

be present. Many studies have established the di�culty for novices of writing syntactically correct code by

documenting the frequency and types of common syntax errors. [BA17, DLRTH11b, FCJ04, DR10, SPBK88,

Bec16] Becker [Bec16] summarizes the evidence to show the consistency of the ten most frequent Java errors

across six independent research studies which ranged from 52% to 80% of the total errors and as well as the

close matching of the ordering in those studies.

Researchers tend to agree that computer science teaching methods have room for improvement, especially

in certain areas. As Hristova et al. [HMRM03] point out, the di�culties in complex languages like Java

cause a variety of common errors in novices’ code, and despite extensive coverage of these in textbooks

and lectures, they continue to persist. Novices have di�culty understanding the intricacies inherent in the

design of complex languages and so frequently have a hard time even identifying the true cause of their

errors. Researchers have noted a lack of evidence in evaluating enhanced compiler feedback and the need to

evaluate them in real classroom situations [DLRC14] as well as little research on how programmers approach

syntax error correction. [KK03] Debugging has also identified as a particularly di�cult task for novices to

learn and for instructors to teach. [MFL+08, MLM+08] Carter and Bank [CB13] claim (based on their review

of relevant literature) that debugging skills are not typically explicitly taught by instructors and so students

learn through a process of trial and error.. Both Kummerfeld and Kay [KK03] and Flowers et al. [FCJ04]

have noted the di�culty for novices of even understanding standard compiler errors in the first place, much

less how to correct them, and Murphy [MLM+08] acknowledges that despite considerable study of debugging,

there are no established best practices to guide instructors.

The contributions of a token accuracy approach to supplement existing measurement and analysis tools

would be expected to help researchers identify causes and e↵ects of these issues as well as provide us ways

to empirically measure and quantify the impacts of di↵erent teaching and learning strategies. Identifying,

categorizing and measuring student programming behavior could prove valuable to educators seeking to apply
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di↵erent teaching interventions for di↵erent students based on patterns they exhibit in their programming.

Professional training could be enhanced and even automated with tools designed to identify positive and

negative behavior along with corrective suggestions. The first step on this path is developing these strategies

as research tools so that eventually they can be developed as real time assistive technology tools.
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Chapter 3

Literature Review

3.1 Compiler Errors

Compiler messages are a bigger problem for novices programmers because they don’t have as much ex-

perience to draw on to recognize and correct the error as a professional, so they only have the compiler

error messages as guidance for how to proceed [Bec16]. This syntax and compiler message barrier has

been well documented in the literature, along with the time wasting and frustration that follows and

many researchers have specifically identified that confusing compiler messages are a major problem for

novices. [HMRM03, PPM+17, DR10, NPM08, FCJ04]

Interestingly, when Stanford made the switch from using Pascal to C as the language of instruction for

their CS1/CS2 courses in 1991, they found that after the first year, as expected, students were spending

a higher portion of their time correcting syntax errors and their frustration level was higher than before.

After they studied the matter more closely, however, they made the observation that student frustration was

more related to the programming environment than the language. The Pascal compiler they had previously

used was better at error detection and debugging. As a result, they developed a programming environment

specifically targeted to introductory student use. [FR96] Schorsch had made a similar assessment earlier at the

United States Air Force Academy and developed the CAP programming environment for students. [Sch95]

Both of these tools, however, recognized that the most important issue was the inadequate, uninformative

or misleading error messages of commercial compilers, which are tolerable for experts but not for novices.

Kummerfeld and Kay [KK03] observed that students were not paying close attention to the compiler messages

themselves and hypothesized that it may be because they found them incomprehensible. This observation

was confirmed by Flowers et al [FCJ04] who found students often confused by messages and sometimes even

inferred that the compiler was broken when they received an error message that the compiler could not

resolve a symbol for a misspelled identifier.
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Kummereld and Kay also note that syntax errors are more significant for beginners than for experienced

programmers who can generally spot and correct them quickly. In a study on beginning C language students,

they provided a reference guide with a catalog of common syntax errors identified by the compiler. In the

guide, the error was explained and highlighted and was presented along with at least one solution. They

performed a limited scale qualitative study to evaluate the e↵ectiveness of the guide as well as to understand

how syntax error correction might be taught. The evidence they gathered did suggest that providing examples

of similar problems and solutions could be helpful for novices in solving syntax problems.

These results were expanded on by Denny et al., [DLRTH11b] who examined the frequency of programming

errors among novices in order to understand how big of a barrier syntax is to learning programming. They

observed the correctness of code submitted by students on short exercises in an introductory Java course.

The goal was to analyze the nature of the submissions in order to improve their teaching practice. They

expressed surprise to find that even the students who finished in the top quartile of the class ranking had

non-compilable syntax errors in almost half of the code submissions on short exercises where the median

lines of code was 8. Furthermore, approximately 70% of the students submitted non-compiling code at least

four times in a row. The overall conclusion is that syntax is a major barrier to all novices, even the strongest

ones.

Follow on work from Denny et al. [DLRT12] provides evidence not just on the frequency of syntax errors by

novices but on the time to solve di↵erent types of errors. They confirm their earlier results on the frequency

of common errors but also compare the time to resolve the errors for quartile groups of students based on

their class ranking as a proxy for skill level. They found that certain types of errors were easier for higher

skill students in the top quartile to resolve, but that in general all students spent a similar amount of time

solving the most common errors no matter which level they were in. This finding was also noted by Flowers

et al. [FCJ04] who noted that even the best students make the same simple errors late into the semester.

Denny suggests that the surprising result that the time to resolve the two most common errors did not vary

by quartile “indicates that specific teaching support around the causes of these errors may be particularly

e↵ective.”

In addition to being a significant barrier and time sink for novice programmers (and for teachers who have

to explain the same things repeatedly), syntax problems can cause long-term detriment to programmers

who can become disheartened by repeated failure and frustration and give up on the problems all together.

This “give up” scenario has been observed by numerous researchers, including Kummerfeld and Kay [KK03],

Denny et al. [DLRTH11b] and [ref]

Compiler errors for professionals tend to follow a similar pattern to novices in that a large percentage of

the errors are concentrated to a small number of di↵erent types. In the previously mentioned Google study

of 26.6 million build errors with 18,000 developers over nine months [SSE+14] researchers found that for

Java code the top five errors accounted for 80% of the total errors reported with the number one most
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common error appearing in 43.3% of the errors. Independent of the programming language (Java or C++)

10% of the error types account for 90% of the build failures. The type of errors observed were primarily

dependency-related for the professionals instead of syntax-related like novices. They also not surprisingly

observed that the number of compiles a professional took to fix was lower than what has been observed with

novices in other studies. The median number of build attempts until the errors are resolved was 1 and 75%

of the build errors were resolved within at most two builds for all of the 25 most common error kinds for

both Java and C++.

3.2 Tools and Approaches for Enhanced Error Messages

One of the major issues with compiler messages aside from the language ised itself is the ambiguity of

identifying the actual error in the code since multiple errors are frequently presented with the same error

message. This problem is unavoidable from the compiler’s perspective because of limitations of compiling.

As a result, many researchers have looked at compiler messages generated by various code samples and

tried to generate strategies for making these messages more understandable for novices and as mechanisms

to improve teaching. Here will will review the techniques taken by these researchers to understand the

successes and limitations they have disovered to guide the development of the token mapping technique.

Pre-compiler approaches

The Code Analyzer for Pascal Tool (CAP) [Sch95] was developed by Schorsch as a static code analyzer to

perform diagnostic checks on student code to diagnose the most common error messages and coding errors

they observed in syntax, logic and style. The CAP program uses a pre-compiler approach that identifies

and recovers from all syntax errors in attempting to parse a student’s code. CAP forces students to focus

by only reporting the first error of a cascading sequence (an approach of limiting error messages to promote

student focus also noted as e↵ective by Denny. [DLRC14], Becker [Bec16] and Kolling [KQPR03]. This was

accomplished by correcting the problem in the pre-compiler’s internal symbol table, which is similar in e↵ect

to what a token mapping would achieve on an individual token. The CAP tool is a recursive descent compiler

using wide tokens (which include source code row, column and comment information) in order to attempt

to ascertain the intent of the programmer. As an aside the CAP and Gauntlet tools were well received by

instructors who used them and identified in surveys that the tools significantly reduced their grading times

and o�ce hour burden.

The Expresso tool developed by Hristova et al. [HMRM03] is another example of a pre-compiler to identify

common Java errors and provide enhanced messaging to avoid cryptic compiler error messages for novice

programmers. They assembled their common error list with survey data of faculty and student teaching

assistants and categorized the errors by syntax, semantic and logical errors. The implementation of their

system was a multiple-pass pre-processor which first cleaned and prepped the students code, tokenizes the
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input stream and then detected the mistakes and generated a printout by line number. The specific detection

algorithm was not identified but the token matching approach to code analysis is similar to what is proposed

in this research plan.

Post-compiler approaches

Denny et al. developed an instructional tool they called CodeWrite [DLRTH11a] for drill and practice of

programming and program testing. They did this by creating a recognizer that parsed the programmer’s

code as well as the raw compiler messages so they could categorize the errors by type. In their sample of

12,369 code submissions, they could correctly classify about 78% of the errors, but the compiler message was

was not su�cient to distinguish other types of errors. The key issue was properly identifying more contextual

feedback. They responded to this by performing static analysis with regular expressions, which helped them

identify an additional 14% of the total errors. This approach has similarities to a token mapping technique

but more restricted because of limitations of regular expressions.

The Gauntlet[FCJ04] tool was developed by instructors at the United States Military Academy to respond

to patterns of di�culty encountered by freshman in a mandatory Information Technology Course where they

learned fundamental programming skills in Java. The instructors observed that student repeatedly made

the same mistakes, did not understand error messages and often wasted hours of time on simple errors.

Their response was to catalog the top fifty student programming errors and then build a static code analyzer

(pre-compiler) to catch and explain the errors in layman’s terms. Their tool also finds many common novice

semantic errors that are not syntax errors. They describe their system as an expert system which provides

the students expertise and advice they would normally receive from their teacher. The system itself does

not do anything to narrow in on the type of error, for which a token mapping approach could be useful, but

instead provides advice on various possible causes of the error and suggests possible solutions.

Dy and Rodrigo [DR10] present a detector for non-literal java errors, which they define as errors where the

compiler-reported error does not match the actual error. The catalog of non-literal errors were assembled

by manually inspecting submitted code with compiler errors that was assembled from a plugin to the BlueJ

system. They programmed a detector using a post-compiler approach that uses the compiler errors, line

number of the error and the code submission and trys to match this against patterns in their catalog of

non-literal errors. Their paper did not provide additional information on the precise mechanism they use to

perform the matching so the technique is unknown, but seems like some form of search ranking algorithm. The

authors identify two major shortcomings of their system, including the inability of the system to determine

programmer intent and the limited catalog of non-literal errors which they subjectively determined through

their manual inspection of code samples. The approach of matching code samples against patterns is similar

conceptually to the token mapping technique.
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Becker [Bec16] developed a post-compiler tool called Decaf which analyzes a student’s Java source code and

presents the standard javac output alongside an enhanced compiler message entitled “Translated” output.

The system recognizes 30 common error messages and presents the user with only the first error. He did not

provide any detail on the specific technique he used to identify what enhanced message to display to the user

based on the error. He presents an example of a “cannot find symbol” error resulting from a myString.length

call, which provided an interpreted message and suggested correction with myString.length(). This mes-

sage indicates that the tool is customizing responses to the user’s code instead of just providing generic

enhanced messages, but it is unclear to what extent this is using any unique matching logic or just a code

completion-type heuristic. He provided empirical evidence with a control group showing a positive impact

of di↵erent students using the tool across two semesters.

Rigby and Thompson [RT05] tested an Eclipse IDE plug-in called Gild [SDM+03] with first-year students

learning to program Java on a small sample of 10 students with inconclusive results. The plug-in provided

many features to customize the presentation of Eclipse including simplifying the user interface and enhancing

help and instruction features with a goal of better teaching and learning Java. One of these features was a

set of enhanced compiler messages for 51 common novice errors [Uni17b]. There was no description of the

mechanism for supplying these enhanced messages and the feature report describes it as links “extra” help

messages so these were presumably not customized based on code analysis.

3.2.1 Interpreter

Freund and Robers of the Stanford Computer Science Department took a di↵erent approach to the issue of

providing enhanced compiler errors to novice students in the development of their Thetis [FR96] programming

environment for ANSI C by developing an interpreter instead of a compiler. The logic was that students

were better served by trading o↵ the run-time e�ciency of compiled code and execution speed for simplicity

and debugging features. Although the goal was more than just enhanced compiler messaging, this was listed

as the first problem they wanted to address and one of the main di↵erences between Thetis and other IDEs.

The approach to providing enhanced messaging was primarily to enhance the verbosity of messages like “type

mismatch” to “cannot assign a value of type string to a variable of type char.” They also added syntactic

restrictions not present in standard C to prevent common errors, such as an assignment inside a conditional

expression instead of a relational operator, such as if (i = 0). The interpreter approach allowed them

to perform a substantial amount of run-time checking that was not syntax related. For example, they

could identify errors such as: dividing by zero, using an uninitialized variable, dereferencing or freeing an

invalid pointer, array out of bounds, out of range value to an enumerated type, exiting a non-void function

without returning a value, bad function pointer or passing invalid arguments to a function. A token mapping

approach could be used to identify several of these run-time problems prior to execution, but not all of them.
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Similar to the CAP and Gauntlet tools, Thetis was popular with instructors because of reduced grading and

debugging time and as a live teaching tool in discussion groups and o�ce hours.

3.2.2 Intelligent Tutoring Systems

Johnson and Soloway [JS85] developed a tutoring system at Yale for Pascal that assesses a student’s “buggy”

code and maps it against a knowledge base of programming plans and strategies in order to generate an

instructional path for the student to learn how to fix the problems. The systems consists of two compo-

nents, a programming expert (which analyzes the program) and a pedagogical expert (which performs the

instruction). The primary focus of their paper was on the programming component which relied on building

a database of known programmer errors and misconceptions. The key element of this process is forming

a hypothesis of the programmer’s intention by analyzing the code submission. The authors developed the

knowledge base using programming plans, which they posit that experts use extensively in programming.

The concept is based on a psychological theory of the programming process, which relies on plan recognition

to interpret understanding. An example plan is a RUNNING TOTAL VARIABLE PLAN to generate a

result in a stored variable. The plan initializes a variable and carries information on the context in which it

should appear, such as a loop. The concept will bear some similarity to the token approach and mapping

against a database of possibilities and is a useful guide because of its theory of determining programmer

intention.

Truong et al. [TRB04] developed a static code analysis system at Queensland University of Technology

initially to automate grading and feedback for students in an introductory Java class motivated by large

class sizes and the desire to increase their emphasis on teaching program design methodology which they

noted in the literature. Their contribution was a tutoring and grading system that analyzed a student

program for quality, generated ideas for alternative solutions and o↵ered hints. The system was designed

to be highly configurable and extensible to be used for di↵erent exercises. The concept of informative and

immediate feedback and correct solutions was designed to address student misconceptions. The primary

approach to their system was to examine source code, parse it into an AST tree and then compare that

structure against model solutions for given problems. They also place an emphasis on software metrics to

measure student performance and evaluate program quality and adherence to good programming practices.

They noted that software metrics not usually adopted by the existing similar systems and instead used

primarily for marking and plagiarism detection instead of teaching and feedback.

Carter and Blank [CB13] describe an intelligent tutoring system under development which uses Case Based

Reasoning (CBR) to represent and reason about errors in a student’s code. The CBR consults four database

tables with syntax, runtime and logic issues and one representing the overall case base. Cases are identified

by main and subtype, di�culty level, id, usage count and suggested steps to a solution and error symptoms.

The system intends to provide more descriptive information to supplement the compiler and runtime system
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feedback as well as visualizations for reinforcement. A historical tracking system will reason about knowledge

gaps for the students based on patterns of previous errors. Carter and Blank [CB14] performed an evaluation

of the system on a pretest-practice-posttest methodology in 2014 without a control group on a small sample

of 12 college students which did not show a significant di↵erence between the pretest and posttest results

(the actual statistical results were not reported in the paper). Carter [Car15] subsequently performed an ad-

ditional larger evaluation of high school students and did demonstrate a statistically significant improvement

in the posttest scores. There were some methodological mistakes in the study design, however, because the

participating students self-selected into the study and there was no control group to indicate if the system

provided any benefit or if the exercise of practicing itself was the cause of the higher scores. In any event the

approach to providing context and suggestive assistance is similar to Denny [DLRTH11a] using a di↵erent

algorithmic approach.

3.2.3 Recommender Systems

Recommender systems are often used in situations where users either do not have the experience or time

to sort through large amounts of data quickly to make a decision. A recommender system gathers and

analyzes data and supports user decision making by providing recommendations based on a user profile.

They have been applied in various commercial settings, such as Amazon.com’s recommender system to help

guide consumers on alternative or additional items they might want to purchase based on what they search

for or view.

There has been a line of research recently proposing the use of recommender systems as integrated develop-

ment environment extensions for software engineering. Robillard, Walker and Zimmerman [RWZ10] argue

in support of their opinion that recommendation systems for software engineering are “ready to become part

of industrial software developers’ toolboxes” to help with everything from reusing code, to navigating large

code bases and class libraries to writing e↵ective bug reports. Ponzanellii et al. [PBDP+14] describe what

they claim is a novel approach to mine StackOverflow comments given a context in an IDE to notify the use

of available help. Their recommender system evaluates the relevance of StackOvervflow discussions taking

into consideration code aspects (code clones and type matching), conceptual aspects (text similarity)and

community aspects (user reputation) to decide if a StackOverflow discussion meets a threshold that gen-

erates a user notification. The code context is determined by the package/class/method name, the source

code being modified, the types of the API used and the names of API methods. Queries are generated from

the context and used to retrieve a list of possible StackOverflow discussions. The results are then ranked by

similarity in text, code, API types, API methods and various StackOverflow specific items (like scores and

reputations). This type of a recommender system could be used in a token mapping system by matching a

users token stream against a library of possible token maps for correct and incorrect solutions. The ranking
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could be used to identify a best match and possible understanding of user behavior or corrective action in

debugging, syntax correction and even logical or complex use cases.

Hartmann et al. [HMBK10] developed a social recommender system for use in computer science instruction

at the University of California, Berkeley and Stanford. The system provided enhanced error feedback by

querying a database containing a selection of top errors and providing feedback from other users on how

they have corrected similar errors previously. The errors selected for inclusion in the database were created

initially by experts instead of user submission logs like most other studies, however the list is dynamic with

a list of actual student bugs contributing. One novelty in their system is a voting system by students to

bump solutions based on their experience. Their quantitative data indicated that 47% of errors had useful

fix suggestions in their database. The main di↵erence between their approach and a StackOverflow approach

is that they use code semantics instead of string literals for matching. In particular, their database contains

code semantics not just for working code samples but for broken code. It also contains instrumentation for

tracking code evolution over time. The database is built up by tracking code changes whenever an error is

fixed by capturing a di↵ report on the code before and after the fix. They also use a progress heuristic for

identifying a subset of runtime errors. The matching algorithm uses an approach similar to token mapping

system envisioned in this proposal where the code is run through a lexical analyzer and analyzed. They

compare strings for similarity using a simpler algorithm than we propose which is the Python difflib

ratio of matched to unmatched tokens. They suggest that other techniques for similarity detection could

be substituted. A primary di↵erence in our approach aside from the social aspect would be an attempt to

identify error patterns and a path to correction over time in a model that could be built up with machine

learning. Additionally we will examine patterns in blocks of code and not just on a line by line basis.

Debugging Behavior

Several studies have examined patterns and strategies that programmers use to debug programs. The study

of debugging behavior and the thought process of programmers during debugging is interesting because it is

considered a di�cult and somewhat distinct skill from general programming ability. Murphy et al.. [MWB99]

explain that there is a need to develop best practices for instructors on how teach debugging because there

is not that information typically in text books about it. In an attempt to provide evident of debugging

behavior, they performed a qualitative study on 21 CS2 novice java programmers to identify the “good, bad

and quirky” debugging strategies they used to fix one of six typical CS1-level programming assignments.

They observed that students used tracing, commenting out code, diagnostic print statements, methodical

testing, debuggers, online resources and pattern matching with varying degrees of success and good and bad

habits.
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Think Aloud Studies

The purpose of a think aloud study format in a computer science application is typically to understand

strategies and thought processes used by students to solve problems or debug programs. Think aloud studies

usually follow strict protocols developed by Ericsson and Simon [ES93] initially for cognitive research studies

in psychology to elicit subject verbalization of their thoughts and behaviors while performing cognitive tasks.

The protocols are designed to minimize the cognitive e↵ort of their verbalization to allow a subject to focus

on the problem being observed as well as to prevent bias. One of the most valuable aspects of information

provided by this study format is data about the sequence of events that occur while a subject solves a

problem.

Teague et al. [TCAL13] applied this technique to novice programmers at two universities in Australia in an

e↵ort to understand the nature of di�culties faced by the programmers in tracing and explaining existing

computer code. Their motivation was to understand the nature of reasoning that the students exhibited

in order to debunk three common perspectives of why students typically struggle, including program mis-

conceptions, misunderstanding of requirements and poor self expression. They used the think aloud results

to provide direct observational evidence refuting these explanations and to generate their own theory that

many of the problems were due to the level of reasoning students were using. The result has implications for

teaching strategies which can be developed to identify issues and assist students who exhibit them. They

point out that the process of a think aloud method can be di�cult for a subject to follow, especially a novice

su↵ering from cognitive overload, which suggests that an automated approach using token mapping could

improve data quality and make di↵erent subjects data more comparable.

Yuen [Yue07] performed a think aloud study on novice CS1 students in an e↵ort to understand how they

construct knowledge for complex concepts. His motivation was to understand the level of student knowledge

and how they came to acquire it in order to develop instructional aids to combat high dropout and failure

rates in the CS1 course at the University of Texas at Austin. His study involved eight undergraduate

students from a summer session of CS1 targeted at non-computer science majors who solve three problems

while thinking aloud. He states that the goal of cognitive studies is to develop a model of cognitive processes

and then map a subject’s thought and actions to the model. The study results indicated students exhibited

three types of behavior in their knowledge construction ranging from the least preferable “need to code” right

away by trial and error, to generalizing the problem from previous knowledge, to the most desirable behavior

of designing e�cient solutions where a student displayed that they internalized conceptual knowledge.

Whalley and Kasto [WK14] performed a qualitative think aloud study on novice programmers code writing

strategies using six students who completed three programming tasks of increasing conceptual di�culty based

on knowledge taught in an introductory course they were taking. They documented the subjects learning

progression and approaches to learning to obtain insight into the cognitive processes in learning computer

programming. They observed similar categories of behavior in learning as other researchers including those
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who give up, tinkerers who experiment more randomly and those who solve the problem and move on. An

interesting contribution of this paper which would be observable by token mapping is the changing behavior

of students during the progression of the tasks as they gained knowledge and experience. They also note

the particular di�culty of novice programmers in performing a think aloud study because the programming

itself tends to be such a demanding cognitive task.

Prather et al. [PPM+17] performed a think aloud study on 31 students in the middle of a CS1 course where

students were observed completing a timed quiz to solve a programming problem in their enhanced compiler

message program Athene. The primary goal was to observe the student reactions to compiler messages,

especially including the enhanced messages they provided. One of their objectives was to gather evidence

on whether students even read the enhanced messages and which messages were most helpful. This think

aloud study was an add-on to the quantitative aspect of the study in order to classify trends observed in

the quantitative data. Token mapping data, especially over time, is expected to provide similar benefits to

improve understanding results of programming language studies and generating theories and explanations

for future study.

3.2.4 Productivity of IDEs vs Text Editors

Several researchers have suggested that using Integrated Development Environments to provide assistive

tools for programmers could be beneficial to novices in resolving syntax errors. Kummerfeld and Kay [KK03]

comment that it “may be suggested that use of Integrated Development Environments would improve syntax

error correction through the use of templates and/or intelligent IDE”, however, they conclude that most errors

that they observed would still be di�cult to diagnose/prevent. The Thetis [FR96] tool from Freund was

a full programming environment designed specifically for novice students. Gild [SDM+03] was an e↵ort to

reduce the complexity of the typical full featured Eclipse IDE for novices so that they can have the benefit

of the most important features like debugging tools and enhanced hints.

The analysis of build errors at Google by Seo et al. [SSE+14] provides some interesting evidence regarding

the possible impact of IDE usage in programming productivity. In analyzing 26.6 million builds by 18,000

developers over a nine month period, the researchers observed some interesting e↵ects potentially attributable

at least partially to IDE usage. They examined build events for two languages: Java and C++ and compared

various observable metrics as well as the tool usage by developers in each of these languages. They found that

nine out of ten Java developers used an IDE such as Eclipse or IntelliJ IDEA to program while eight out of

ten C++ developers just used a text editor such as Emacs or Vim to program. Of the total number of build

failures observed, the median percentage per developer was 38.4% for C++ and 28.5% for Java. Although,

the most common build failures for both languages were dependency related (52.7% for C++ and 64.7% for

Java), the percentage of simpler syntax errors was higher for C++ than Java (detailed results not reported

but a graph suggests approximately 12% for C++ and 4% for Java). This result may be attributable to
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syntax di↵erences in the languages themselves, however, the authors believed that the built in error checking

of the IDE was a contributing factor to the trend.

3.3 Parallelism and High Performance Computing

The problems of learning programming is not limited to novices. Professional programmers and scientists

often encounter situations where they return at least partially to a “novice” level when using new libraries,

programming paradigms or unfamiliar languages. A common contemporary example of this is with High

Performance Computing (HPC) or parallel computing, where complex syntax, libraries and concepts can

frustrate even highly experienced programmers who either have limited experience in the area or quickly

become out of practice.

The scientific community is acutely aware of the di�culty level of programming high performance applica-

tions by non-computer scientists [Wor17] [ABC+06], however there is a general lack of empirical research

on the specific causes and possible solutions for this problem [Kai15]. The computer science community

and hardware manufacturers have o↵ered numerous paradigms and approaches to solve the highly complex

problems presented by concurrency and performance mapping for various hardware, but the solutions are

often so complex that they create an obstacle for scientists productivity in applied disciplines.

Concurrency in programming has broad applicability across large-scale commercial enterprises, internet

searching, scientific computing, modeling and transaction processing so it is important for the future of

computer science education. Teaching complex computer programming concepts, such as concurrency, can

be improved if educators have an idea of the specific impacts di↵erent techniques have on students. Under-

standing the precise nature and type of students’ mistakes while learning to program for concurrent systems

is important in designing teaching practices.

Educators sometimes assume they know the problems their students face, but Brown and Altadmri [BA17]

showed that even experts in computer science education often have holes in their understanding of the impact

of programming languages or errors. They examined whether 76 educators’ opinions of common programming

mistakes matched actual observations from their Blackbox [BKMU14] data collection project with over 100

million compilations of students learning to program Java. The results showed that the educators’ estimates

on frequency and time-to-fix of the 18 most common errors in the database did not exhibit a consensus

among the educators themselves nor did the estimates match the actual data. Computer science educators

can benefit from this research since there are some popular educational programming products available

today, such as Alice [ali17], which use concurrency elements like ’Do Together’ and ’For all together’ and

Scratch [scr17], which allows for parallel execution of threads by launching two stacks. The community can

benefit from knowledge about which paradigms are easier for humans to use.
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Empirical study of programmer productivity has begun to produce quantifiable measurements of the di↵er-

ences between approaches to programming and learning to program. Some more recent studies are beginning

to look at measuring the process of programming itself instead of just compiler errors. Price et al. [PBL+16]

looked empirically at programmer productivity using a Frame-based programming editor compared to the

original Java editor by comparing time and number of edits as well as overall progress.

3.3.1 Threads vs Processes

The fundamental approach to parallelism in a Threads-based paradigm is the concept of multiple processes

in a program operating in parallel sharing a single memory space. This is in contrast to a Process-based

approach to parallelism where the fundamental approach is the concept of multiple processes having local

memory and operating independently and sequentially on their own, but sharing data by explicitly passing

messages over channels. Threads tend to be lower level and map to a multicore hardware architecture with

processors capable of multiple threads of execution. Process paradigms tend to be higher level with the

emphasis on the communication of processes.

We selected these two paradigms for examination primarily because of their very di↵erent approaches to

solving concurrency problems. The Threads-based paradigm is the most well-known and widely used model

and serves as a useful control group because of its prevalence in system software and its use in common

programming languages like C, C++, C#, Java and Python. The programming language Go was created at

Google by engineers seeking to create a new language which “by its design . . . proposes an approach for the

construction of system software on multicore machines.” The language development was motivated because

no new systems language has been developed in over a decade to address the multicore computing land-

scape that exists today. [gol17b] The engineers built the concurrency primitives of the language on Hoare’s

Communicating Sequential Processes (CSP) [Hoa78, Hoa85] because it is “one of the most successful models

for providing high-level linguistic support for concurrency.” [gol17a] Occam-⇡ [pu17] and Erlang [erl17] and

JCSP [WAF02, WBM+07] are other languages and libraries inspired by the process-oriented approach of

CSP.

3.3.2 Concepts of Parallelism

The problem that parallel programming is “hard” seems to be widely accepted and expressed in many

abstracts and book introductions in academic and popular literature, but the statements are generally

qualitative and expressed as obvious to the reader. Intuitively this seems true because of the additional

considerations and complexities in parallel programming that are not required in sequential programming,

but there does not appear to be any evidence in the literature to quantify or support the relative di�culty

of parallel programming compared to sequential programming in general.
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Lewandowski, et. al. [LBM+07] did examine the intuitive complexity of general parallel concepts involving

race conditions and locking by asking non-programmer students to describe in plain English what problems

might be encountered in a scenario involving multiple parties attempting to purchase a fixed number of

tickets in an online system. He found that 97% of the students could conceptually identify a race condition

and that 73% identified at least one possible solution. This seems to indicate that at least the high level

concepts of parallelism may be naturally intuitive to people.

Rossbach et al. [RHW10b] conducted an empirical study by examining the results of programming assign-

ments for 237 students and 1,323 programs in an operating systems course to identify and classify the types

of synchronization errors that students had, as well as their frequency. In total, the authors identified ten

types of errors that occurred and found that the number and types of programming errors were lower for

transactions (10% of students) than locks (70% of students) on a similar programming assignment.

Although human factors research in programming languages is still sparse and relatively young as described

by Kaijanaho [Kai15], there are some studies examining the area of parallel programming. The main fo-

cus area within parallelism has been Software Transactional Memory (STM) where Kaijanaho identified

4 RCTs (randomized controlled trials) [RHW10b, PAT11, COS11, NTPM11] which compared STM to

other traditional course and fine-grained locking mechanisms. The non-RCT empirical study conducted

by Coblenz [CSM+15] on the use of reducer functions (functions to perform a summary operation over all

data) in a parallel programming context compared OpenMP to Cilk Plus in a small masters level course.

Part of this study provides a further examination of that issue specifically as it relates to o✏oad computation

in coprocessor architectures.

3.3.3 GPU Programming

The scientific community is acutely aware of the di�culty level of programming high performance applica-

tions by non-computer scientists [Wor17] [ABC+06], however there is a general lack of empirical research

on the topic [Kai15]. Various paradigms and approaches to solve the highly complex problems have been

o↵ered, but the solutions are often so complex themselves that they create an obstacle for scientific discovery

in applied disciplines. Learning GPU programming is important because it provides a relatively low cost

approach to massively parallel computing as a core technology in many of the world’s fastest and most

energy-e�cient supercomputer clusters. Storti and Yurtoglu explain that HPC hardware performance mea-

surement has evolved from FLOPS (floating point operations per second) to FLOPS/watt and GPU-based

parallelism competes well in terms of FLOPS/watt [SY15]. They make further claims that GPU-based par-

allel computing can reduce development time by orders of magnitude and that these gains can be achieved

at reasonable development and hardware costs. In advocating why developers should learn CUDA, they

argue that it is currently the best-supported and most accessible platform for GPU-based parallel comput-

ing. By contrast, Thrust is a high level interface to CUDA similar in style to the C++ Standard Template
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Library (STL). It is fully interoperable with CUDA and provides a collection of data parallel primitives to

allow a high level of abstraction to CUDA. We can imagine some scholars, developers or students, given this

di↵erence in abstraction, might assume that this would make it easier to use and thus plausibly improve

programmer productivity. However, we are aware of no evidence of such a claim, in either direction, for this

kind of programming and evaluate the claim in this work.

The issue of GPU programming complexity specifically has also been widely discussed, not just from the

issue of the complexity of classic massively parallel programming issues like data races, locking and thread

management, but also specifically related to GPU hardware. GPU programming is important because it

provides a relatively low cost approach to massively parallel computing. Bourgoin, et al. [BCL17] identify

the primary reasons for the complexity of GP-GPU programming in the two main frameworks, CUDA or

OpenCL, an open standard from the Khronos Group [Gro17] as i.) the low-level nature of the programming,

ii.) the need to write programs as a combination of two-subprograms and iii.) manually managing devices and

memory transfers. They provide an explanation of how statically-typed languages, compilers and libraries

can provide higher level abstraction to reduce complexity using the programming language OCaml as well as

provide compiler time checking of certain types of errors that are only detected at runtime by the frameworks

in order to make debugging easier.

Ueng et al. [ULBH08] claim CUDA is an attempt by NVIDIA to make programming many-core GPUs more

accessible to programmers but that there are still many burdens placed upon the programmer to maximize

performance. They focus specifically on the complexity of the burden of dealing with the complex memory

hierarchy of the GPU in obtaining performance optimization ranging from 2-17x. The paper describes a

transformation tool they created to automate to allocation, management and data transfers within the GPU

hardware itself.

Thrust, on the other hand is a high level interface to CUDA based on the C++ Standard Template Library

(STL). It is fully interoperable with CUDA and provides a collection of data parallel primitives to allow a high

level of abstraction to CUDA which in theory makes it easier to use and thus plausibly improves programmer

productivity. This study seeks to validate these claims and to quantify any productivity di↵erence between

the two approaches to GPU computing. If a measurable benefit can be observed, not only could there be

an economic and productivity impact for HPC GPU users, but the specific benefits could potentially be

used for programming language design decisions in other parallel computing contexts or to create beneficial

abstractions for other parallel computing models. The benefit to scientific discovery of such improvements

would likely be wide ranging.

3.3.4 Empirical Literature on Concurrency

Kaijanaho [Kai15] conducted a review of empirical studies up to 2012 that utilize human factors evidence in

programming language design and found 156 papers that compared programming language designs with hu-
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man factors measures. 35 of the papers used controlled experiments and 22 of these using formal randomized

trials, a typical standard [U.S10] for scientific research. Several of these empirical studies relate to concur-

rency, [RHW10b, PAT11, COS11] primarily on Software Transactional Memory (STM). These studies used

college and masters level student participants to identify programmer performance (in development time)

and error rates using STM compared to Threads/Locks-based solutions which generally support lower error

rates using STM approaches compared to locking. Another empirical study by Coblenz [CSM+15] compared

the C/C++ language extensions Cilk Plus to OpenMP using students performance on tasks using reducers

for concurrency in a graduate course, which provided limited data due to a small study size of 8 students, but

suggested usability issues with both approaches. The researchers conclude that new instructional techniques

or tools are needed to improve the students’ performance on these tasks. Other systematic literature reviews

identifying empirical studies in software engineering generally include those performed by Kitchenham et

al. [KPBB+09] and Zhang et al. [ZBT11] make no specific mention of papers on concurrency.

3.3.5 Research Standards in Computer Science

In our overall program of research, we are seeking to develop methods, data capture and measurement

tools and analytical techniques to contribute to evidence-based theory development in computer science

research. These methods are widely used in the medical research community after the work of Austin

Bradford Hill [DH50] in developing the Bradford Hill criteria for causality models in randomized clinical

trials. The medical community now conducts tens of thousands of RCTs annually and has developed and

adopted consolidated standards for reporting trial results (CONSORT) [MSA+01]. The fields of psychology

and education have also developed an extensive body of literature on human subjects-based experimental

research methods, some of which are applicable to computer science studies. The challenges those fields

faced and the advances they have been made in experimental study design provide useful lessons to our field

as we seek to develop our own evidence standards for causality, internal and external validity and integrity.

The specific hypothesis we examined in this research paper on GPU programming is based on an intuitive

conception (and marketing claim) that a higher level abstraction paradigm for programming a di�cult

concept will be “easier” to learn and use and will therefore improve a programmer’s productivity. Since the

use of evidence-based theory development is in its infancy in computer science, we have not found commonly

cited existing theories suitable for application to this type of predictive hypothesis testing in this evolving

field. Finally, we want to stress that companies make marketing claims about programming productivity

regularly, but they are rarely, if ever, evaluated in rigorous ways. As such, we remind the reader that the

current authors’ goals are to evaluate the claims made about GPU programming objectively, but that we

have no vested interest in the outcome of this study.
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Chapter 4

Extending Automated Token

Accuracy Mapping Through a

Re-Analysis

4.1 Introduction

This chapter describes a re-analysis of the data I collected for my Masters project and Thesis called “Em-

pirical Study of Concurrent Programming Paradigms.” [Dal16] The revised work was recently accepted for

publication by ACM Transactions on Computing Educaton under the title “Analysis of a Randomized Con-

trolled Trial of Student Performance in Parallel Programming using a new Measurement Technique.” [Dal16]

Appendix A contains the Methods section of the paper in press along with experimental materials for refer-

ence. In this chapter, we will investigate the following research question:

RQ1: Can the Token Accuracy Map technique provide useful information in identifying the specific problem

areas and common types of accuracy errors in parallel programming?

A goal of the chapter is to further develop a supplemental empirical analysis technique to learn whether useful

information can be gathered on the specific problem areas student programmers experienced in learning the

alternative paradigms. This research question does not lend itself to empirical measurement so we do not

o↵er a testable hypothesis for the secondary investigation, but we address the potential usefulness of the

technique in detail in the Discussion section.
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In the re-analysis work post-thesis, the entire token accuracy matching algorithm was re-worked and opti-

mized and then manually re-scored as a cross check for accuracy. The revised tool generated more accurate

token mapping and led directly to the localized token signature development. The unexpected extensive

peer review during the publishing process led to the need to work through and resolve various shortcomings

of the original more simplistic approach. Through an extensive, thoughtful and careful re-examination of

the limitations of the first version of the token accuracy map, we developed a detailed understanding of

the particular areas where token-based analysis would be well-suited. Fortunately, the detailed data for the

project was collected through the automated testing system that I created for the thesis, so I was able to

go back to the original source data and analyze it again as-new but from a fresh and more sophisticated

perspective.

4.1.1 Token Accuracy Maps

The scoring model used to evaluate the users’ responses to these programming tasks is based on the Token

Accuracy Map (TAM) approach described by Stefik and Siebert [SS13] and later automated by Dalei-

den. [Dal16]. The basic concept of the TAM is to parse a code sample into a sequence of tokens using a

lexer, then to align the tokens to a correct solution and then to compare the two token arrays to determine

the percentage of correctness in the overall response. In addition to an overall accuracy score for the code

sample, the technique yields detailed data on the accuracy rate of individual tokens and groups of tokens in

the participants’ code, which can be analyzed separately in the full Token Accuracy Map. Examining the

patterns in this data allows us to draw inferences about both the overall impact of the paradigm and specific

elements.

In order to automatically score participant results, we implemented the Needleman-Wunsch [NW70] pair-

wise sequence alignment algorithm on the token arrays. The Needleman-Wunsch algorithm is a dynamic

programming algorithm based on the longest common substring algorithm often used in DNA sequencing.

The Needleman-Wunsch algorithm is a global alignment approach that analyzes and aligns every token in

the sequence. We used the standard weighting for mismatches (-1) and insertions/deletions (-2) and matches

(+1) in order to maximize the similarity of the global alignment. The Needleman-Wunsch algorithm is ex-

pensive computationally with a runtime proportional to product of the length of the two token strings being

compared, but it is suitable for the number of tokens in our experiment.

The Token Accuracy Mapping approach enables us to examine the comprehension and use of particular

tokens across groups in addition to the overall accuracy. This data can be used to determine which individual

elements of the di↵erent paradigms are most intuitively understood or likely to be correct.
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4.1.2 Limitations of TAMs

Although TAMs can give us useful information about programmer accuracy, they have limitations. A

limitation of concern is in scoring alternate semantically correct solutions. In our experiment, we compare

the participant responses to a particular code solution. The first type of problem can occur with simple syntax

di↵erences between a response and the solution, such as variable names or non-material order variation. These

can be fairly easily addressed through manual inspection and a comparison to a di↵erent valid solution or a

manual reordering or renaming of the participant response. Before we completed our analysis, we performed

this inspection and made these non-material syntax adjustments. Since the code descriptions were fairly

specific and the code samples used to learn the paradigms formed a suggestive blueprint, the observed

variation among participant responses were minor and only a few required any adjustments to improve the

accuracy of the automated algorithm.

The second type of problem with TAMs is where the participant solves the problem in the task in a seman-

tically correct, but alternative manner to the solution code. This situation could be handled by manually

categorizing responses into groups and generating correct solutions for each approach. An overall accuracy

score would still be valid in this case, however the token accuracy comparison would only be valid within the

group. In our observed data, our manual inspection did not reveal this to be an issue in any of the responses,

most likely due to the specificity of the instructions and code samples provided.

4.2 Results

4.2.1 Study Participants

The participants for the study were all recruited from various classes o↵ered by the Department of Com-

puter Science at the University of Nevada, Las Vegas. The classes ranged from 200 (first and second year

undergraduate students), 300 and 400 (third and fourth year undergraduate students) to 600 and 700 level

(graduate students) courses. In the UNLV core curriculum in place at the time, the concept of processes

and threads is introduced in an operating systems class typically taken during junior year so students at

or above that level would be expected to have some type of conceptual mental model of parallelism. The

emphasis of the instruction in these courses is not programming based however so they likely did not have

previous knowledge of the implementation of a threaded or process-oriented program. UNLV uses C++ as

the instruction language for its Computer Science I and II and Data Structures courses and there is little

exposure to threading (or Java-style threading in particular). Participation in the study was voluntary and

participants were rewarded with up to 3% extra credit based on what the course instructors decided was ap-

propriate. Table 4.1 shows a breakdown of the participants with valid responses by position in the academic

pipeline for each paradigm group and Table 4.2 shows the breakdown by gender for each paradigm group.
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Grade Process Threads Total

Freshman 1 1 2

Sophomore 5 5 10

Junior 13 16 29

Senior 17 17 34

Graduate 5 4 9

Post-Graduate 2 1 3

Non-Degree 1 0 1

Total 44 44 88

Table 4.1: Participants by Level in School.

Grade Process Threads Total

Female 9 11 20

Male 35 31 66

No response 0 2 2

Total 44 44 88

Table 4.2: Participants by Gender.

4.2.2 Overall Accuracy Scores by Group

The mean accuracy scores by group (concurrency paradigm) and task are shown in Table 4.3 along with the

number of code submissions (N), the minimum score (Min), the maximum score (Max) and the standard

deviation of scores (SD). The results are shown graphically in Figure 4.1 with 95% confidence intervals. The

Process group students had a higher average accuracy score on Task 1 (92.9% to 89.2%), about the same

on Task 2 (75.9% to 76.3%) and lower on Task 3 (42.8% to 79.1%). The standard deviations were similar

for each task with the largest di↵erence on Task 1 (15.4% for Process and 20.2% for Threads). The graph

shows the fallo↵ in accuracy scores for Task 3 in the Process group compared to Task 2, while the Threads

group performed about the same.

To analyze the data, we applied a Repeated Measures ANOVA using the statistical package SPSS. The model

used the three overall task accuracy scores for within-subjects factors as dependent variables, reflecting the

Group Task N Mean Min Max SD

Process 1 44 92.9 30.8 100.0 15.4

Process 2 44 75.9 3.2 96.0 24.3

Process 3 44 42.8 2.9 65.7 12.8

All Process 132 70.8 3.0 100.0 27.3

Thread 1 44 89.2 21.4 100.0 20.2

Thread 2 42 76.3 15.6 99.1 25.8

Thread 3 40 79.1 32.3 96.8 12.0

All Thread 126 81.7 15.6 100.0 20.9

Table 4.3: Accuracy Score By Group and Task.
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Figure 4.1: Accuracy Scores by Group.

sequence given to the participants. Two controlled between-subjects factors were examined together: Group

and School Level. Additionally, we examined other demographic factors including gender, native language,

age and self-reported programming experience as random factors and all other interactions up to 4 ways

were checked and no other e↵ects were significant.

SPSS automatically adjusted the degrees of freedom using the Greenhouse-Geisser score for the Repeated

Measures ANOVA because the sphericity assumption was violated (�2(2) = 10.460, p = .005). The results

for the Within-Subject E↵ects of the Repeated Measures ANOVA shows that Task was a significant factor

in overall score F(1.756, 53) = 27.356, p < .001, (⌘2p = .278). There was a significant interaction between

Tasks and Group in the results F(1.756, 53) = 18.279, p < .001, (⌘2p = .205) indicating evidence in support

of rejecting the null hypothesis, which states that the groups are equivalent. The interaction between Task

and School Level was also significant F(10.537, 53) = 2.128, p = .025, (⌘2p = .152). Table 4.4 shows the

results of the Between-Subjects E↵ects tests of the Repeated Measures ANOVA. Group F(1, 53) = 5.674, p

= .020 (⌘2p = .074) was the only statistically significant result.
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Factor F Sig. df ⌘2
p

Group 5.674 .020 1 .074

School Level 1.011 .425 6 .079

Table 4.4: Between Subjects E↵ects.

Process Threads

Level In School N Mean SD N Mean SD

Non-degree 3 68.9 16.9 - - -

Freshman 3 49.4 48.6 3 84.04 13.8

Sophomore 15 69.1 27.5 15 66.13 30.2

Junior 39 69.5 28.2 44 81.18 23.6

Senior 51 71.4 27.0 49 85.81 14.2

Graduate 15 72.8 28.1 12 83.16 15.3

Post-graduate 6 79.7 29.0 3 91.77 5.1

Table 4.5: Mean Accuracy Score By Academic Level.

4.2.3 Level in School

We classified the participants according to their class year at the university to see if we would observe

any impact from a cumulative experience measure. Our participant pool was concentrated around Junior

and Senior level students and although measuring learning by level was not a primary research goal, we

randomized groups on this independent variable. The significance level for the interaction of Task by Level

in School appeared to demonstrate a weak pattern, with a statistically significant result F(10.537, 53) =

2.128, p = .025, (⌘2p = .152). The lower number of responses on either end of the ordering may have been a

factor in not seeing a more pronounced e↵ect. Table 4.5 shows the Mean Accuracy Score by Level in School

where the N value represents the number of responses across all tasks at each level. This N value is the same

as Table 4.3 and Table 4.6, where N represents the total number of responses, but di↵erent from the N value

in Table 4.1 and Table 4.2, where N represents the number of individual participants by demographic.

4.2.4 Time by Group

Although our focus was on accuracy as a dependent variable, we also tracked time to completion by par-

ticipant. The time score results were similar to the accuracy score results. Figure 4.2 shows a plot of the

time to completion by task and group. The time performance was similar for task 1 for the Process group

(M=204.8, SD=215.4) compared to the Threads group (M=196.2, SD=117.1) as well as for task 2 for the

Process group (M=734.0, SD=329.1) compared to the Threads group (M=754.4,SD=361.7). There was some

divergence on task 3 where the Process group took longer on average (M=732.4, SD=357.7) compared to the

Threads group (M=579.6, SD=311.0), however a t-test on the time by group for task 3 was not statistically

significant, t(81.8)=1.897, p=.061. The mean time to completion by group and task is shown in Table 4.6.
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Figure 4.2: Mean Time to Completion by Group.

4.3 Discussion

4.3.1 Research Question 1

One of the limitations of simply using timings, error counting or compiler errors in empirical human trials on

programming performance, is that there is not very much information in these measures for the researcher

to analyze the cause of the error. Thus researchers sometimes use alternative approaches, like qualitative

analysis to attempt to understand why observed e↵ects occurred. We developed the automated Token

Accuracy Mapping technique presented here to provide an alternative view to qualitative observational

analysis, which despite limitations in its application, can provide a rich data set by which to think through

Process Threads

Task N Mean SD N Mean SD

Task 1 44 204.8 215.4 44 196.2 117.1

Task 2 44 734.0 329.1 42 754.4 361.7

Task 3 44 732.1 357.7 41 594.0 311.0

Table 4.6: Mean Time to Completion by Group.
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potential theories for observed behavior. We applied the technique to this study to explore the research

question (RQ1) of whether the TAM technique can provide useful empirical information for researchers in

this area.

In this case, the basic statistical analysis we can perform for the paradigm comparison exercise gives us

inconclusive information on whether there are di↵erences between the groups in performing these tasks, but

does not yield any information on the causes of programming errors or conceptual misunderstandings in

either group. We use the overall accuracy score as a proxy for performance in examining the di↵erences

between the groups but the overall scores suggest more similarity than di↵erence, except for Task 3. Drilling

down further on the specific TAMs for each task and group, we find that we can learn more information

than the overall scores convey.

The Token Accuracy Map is represented as the solution code (by token) followed by a number which rep-

resents an accuracy percentage for that token. The accuracy score for a particular student response is

calculated by dividing the total number of tokens in the correct solution by the number of correct tokens in

the response and then the overall accuracy score for the task is the average of all the student responses for

that task and group. The detailed token map percentages are calculated by dividing the total number of

responses by the number of correct responses among all participants in that task and group. The detailed

map then represents the token accuracy across all participant responses for each token individually and can

be useful in identifying what specific words and concepts are troubling for the student programmer by ana-

lyzing patterns of groups of tokens. For example, in two excerpts of the full TAMs for Task 2, we can observe

that the key parallel construct in the task was only correctly used by about two-thirds of the programmers.

In Figure 4.3 we can see that the choose token was used correctly 63.6% of the time in the Process group,

while in Figure 4.4 we can see that the synchronized token was used correctly 64.3% of the time in the

Threads group. Although this may appear on the surface to be a simple comparison of alternative syntax,

the semantics and function of these concepts are considerably di↵erent. In the Process paradigm, the choose

block contains a list of expressions that may be evaluated concurrently, while in the Threads paradigm, the

synchronized block is putting a lock on the variable (in this case N) so it is protected from other threads. It

is interesting that a similar percentage of students in each group properly utilized these di↵erent constructs

correctly despite the di↵erent functions of it.

The primary accuracy problem in Task 3 in the Process group can be identified in the TAM shown in

Figure 4.5 for that solution by looking at the low percentage accuracy for the channels required to implement

the solution. In the declarations section of the Main method, there are 6 channels needed for this paradigm:

Channel<type> identifier. We can see that the first channel had a very high token accuracy score for

the four tokens: Channel (91%), < (89%), integer (91%) and c1a (93%), indicating that most students

understood both the need for the channel and the syntax required to declare it. A smaller, but still large

percentage of students realized the need for a second channel as indicated by the token scores of 80%, 77%,
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action84 Consumer93 (89 Reader89 <84 integer80 >77 p189 ,80 Reader89 <77 integer77 >77 p284 )80

repeat55 while57 true⇤

integer66 x80 =71 082

choose64

x84 ==75 p177 :77 Read89 (77 )77

output75 "Received Producer 1: "46 +14 x75

or61

x86 =80 p284 :80 Read91 (82 )89

output77 "Received Producer 2: "50 +23 x82

end32

end75

end84

* indicates < 5.0% accuracy score

Figure 4.3: Task 2 TAM Excerpt (Process).

action76 Run79

integer12 i79 =74 071

repeat62 while60 true⇤

synchronized64 (81 N81 )76

if62 n79 :67 n79 =71 071

n76 :69 n81 =67 i64

i74 =71 i79 +83 176

end60

end67

end71

end79

* indicates < 5.0% accuracy score

Figure 4.4: Task 2 TAM Excerpt (Threads).

action93 Main95

Channel91 <89 integer91 >80 c1a93

Channel80 <77 integer77 >77 c1b80

Channel7 <⇤ integer9 >⇤ c2a9

Channel⇤ <⇤ integer⇤ >⇤ c2b⇤

Channel⇤ <⇤ boolean⇤ >⇤ r1⇤

Channel⇤ <⇤ boolean⇤ >⇤ r2⇤

concurrent89

N71 (68 c1a66 :64 GetWriter66 (64 )66 ,64 c2a64 :59 GetReader66 (66 )66 ,⇤ c1b11 :7 GetWriter11 (9 )⇤

,⇤ c2b11 :⇤ GetReader9 (⇤ )7 ,⇤ r17 :⇤ GetReader7 (7 )⇤ ,⇤ r27 :⇤ GetReader9 (⇤ )7 )66

P96 (91 c1a89 :84 GetReader91 (86 )84 ,77 c2a82 :77 GetWriter84 (80 )80 ,⇤ r17 :⇤ GetWriter⇤ (⇤ )⇤

)91

P57 (57 c1b57 :52 GetReader52 (52 )52 ,48 c2b50 :46 GetWriter46 (48 )48 ,⇤ r2⇤ :⇤ GetWriter⇤ (⇤ )⇤

)57

end89

end91

* indicates < 5.0% accuracy score

Figure 4.5: Task 3 TAM Excerpt (Process).
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77% and 80%, respectively. Very few students created the other 4 channels needed, however, as indicated

by that fact that none of the tokens in any of those declarations has a score over 9%. A consistent e↵ect is

noted in the method invocations for the consumer process (N) where the number of channels being passed

falls from the mid 60% range for the first two channels (c1a and c2a), down to 9-12% for the second two

channels (c1b and c2b) to near 0% for the last two channels (r1 and r2).

The patterns of these tokens suggest a few di↵erent things about what the students may have understood.

First, the fact that the declaration lines and the method invocations had consistent scores across the four

to five tokens required indicates that they generally understood the syntax and how to declare and use a

channel. On the other hand, the fallo↵ in accuracy rates for the other channels tells us that they did not

understand some important principles about how a channel functions. Most students declared at least two

channels which indicates that they understood that the consumer needed communication channels with both

producer objects. Since communication was required both ways, however, the students did not grasp that the

channels are uni-directional, so less than 10% declared channels 3 and 4. The completely missing channels 5

and 6 (all under 5%) are used for notifications to the consumer that the producer was ready to receive. We

interpret these token patterns to indicate that students did not have a clear understanding of the mechanics

of the synchronous communication of the Process model because the missing tokens on the channels show

that they did not have the conceptual understanding to recognize the complexity of the required solution.

Of course, this could be due to the mode of instruction with only sample reference code in this study design,

but in any case suggests that the solution was not intuitively as obvious overall as the threads solution to

that specific task. The TAMs clearly point out the nature of the failure though and are suggestive of the

concepts that need to be taught.

With this ability to examine patterns of programmer behavior on a token level for di↵ering programming

structures in alternative paradigms we find that TAMs are providing useful information suggesting problem

areas and possible causation and explanation in this study. This information can be informative both

to suggest specific further areas of study and in future study design. Additionally, for the computing

science education research community, this knowledge could be used to develop better teaching strategies.

These results suggest that we made progress toward RQ2 because the TAMs did provide useful empirical

information through an automated technique. Although the TAM analysis required a significant level of non-

trivial human interpretation of the students’ semantic di�culties, they provided a useful empirical starting

point and measurable evidence for comparison for the observed di↵erences.

4.3.2 Additional Analysis

Informal interviews with participants and a graduate course classroom discussion of the problems in Task 3

in the Process group confirmed the data in the TAMs about the specific misunderstanding that the channel

communication synchronizes the tasks and blocks execution as a barrier. The result of this misunderstanding
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was that the process group participants did not use the request channel required to implement a correct

solution with this approach. While we could have used output guards in the process example to possibly make

the task easier by needing less channels for communication, we were interested in this experimental design

to examine whether novices could understand the wiring of channels required since it is a key complexity

for process-oriented programming. It suggests an area of further examination for process-oriented language

designers to make constructs that are more easily understood by programmers.

Although this experiment was designed to test the two parallel paradigms, the TAM data also provided some

potentially valuable unintended information on the repeat loop construct for Quorum. In both Figure 4.3

(line 2) and Figure 4.4 (line 3), the token “true” used in the indefinite repeat loop had unusually low accuracy

scores of 4%, which prompted a manual inspection of the cause. We found that the code samples given as

a learning and reference device to the participants (who were all novice Quorum users) did not contain this

exact structure, so the participants were left to guess at an intuitive solution for themselves. It suggests

a problem with the existing Quorum repeat constructs that warrants further examination for the language

designers. This finding has nothing to do with RQ1 in this experiment, but does provide information relating

to RQ2. It points to the usefulness of TAMs to provide information that would not be gathered by standard

measurement tools like timing data, interviews or error examination.

The lack of established evidence gathering and experimental design standards in the computer science disci-

pline for programming language study makes it di�cult to compare our results to previous studies directly,

however we believe elements of our study are consistent with the findings of other empirical studies in the area.

In the context of other work on novice programming errors by Brown and Altadmri [BA16, BA14, AB15] and

on enhanced compiler errors messages by Becker [Bec16], we see similar types of syntax errors in our study,

although the languages are di↵erent (Java instead of Quorum). Semantic errors that showed a high frequency

of occurrence in the blackbox data, like type errors in parameters and return errors in function calls, are

di↵erent but analogous to errors we observed in methods with channel communication in CSP in particular.

The types of syntax errors identified in the syntax study by Denny et al. [DLRT12] are also similar to our

results on missing and incorrect tokens. The ancillary data we observed on the repeat loop construct is

analogous to error rates observed by Weintrop and Wilensky [WW15, WH17]. Although their study di↵ered

from ours in comparing the di↵erent modalities of blocks-based compared to text-based languages, we can

see some similarity between the correct usage of the tokens “repeat” (61.9% Group 1, 54.6% Group 2) and

“while” (59.5% Group 1, 56.8% Group 2) in our study, and the “repeat” loops in the block-based language

they observed.

4.4 Limitations

All empirical studies have threats to their validity and ours is no exception. While methodologically, our study

conforms to long-studied traditions in the design of randomized controlled trials, understanding the impact of
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programming language design on students is di�cult. For example, it could be that these paradigms impact

di↵erent kinds of people in di↵erent ways. For example, young students using concepts from concurrency

in Alice may very well harbor di↵erent impacts than college-level students using a similar approach in

another language. Professional programmers also have an ongoing need to learn new languages, libraries and

paradigms, and the impacts may vary over time or experience or other factors in those cases. Ultimately,

documenting needs, behaviors and performance across these communities under di↵erent circumstances could

help provide a clearer picture and this study does not have the scope to make broad generalizations.

One potential criticism of the TAM approach is that it only tests syntactical di↵erences compared to a

fixed solution and does not reflect semantic di↵erences or alternative answers. While this is a fair criticism

theoretically and points to a limitation of the TAM approach for general use, there are ways to mitigate

this limitation in study design and post processing of answers. In our case, for example, the ordering or

naming in a variable declaration was made irrelevant because we did not specifically check the name of an

identifier, simply the token’s presence or absence. We are also not making the claim that this syntactic

analysis is su�cient as a measurement tool, but rather that its use can provide supplemental data and can

yield information on semantic and conceptual understanding through an analysis of measurable patterns.

The TAM approach would not be useful in every study design or task analysis and could be particularly

ine↵ective in analyzing complex solutions on an overall basis. The best usage seems to be in narrowly

examining specific program structures and in identifying conceptual errors through patterns of missing or

erroneous tokens.

A potential limitation of our experimental design was the uneven complexity of the solution to the third task

with the six channel requirement of the Process group compared to a single synchronized variable requirement

of the Thread group. While this uneven complexity is acknowledged for that task, this was partially the

comparison we were intending to test and quantify from the outset. The di↵erence in performance may also

be attributable to the conceptual fit of the problem with the paradigm for that task. We can imagine various

other example tasks, involving locking for example, where a Thread based group would potentially be at a

disadvantage. For this reason, we make no claims in this paper about the overall ease of use of one paradigm

versus the other. We tested three common problems taught at the college level knowing there are hundreds

or thousands of others to be tested in the future and experimental design is subject to unintended bias.

Further, studies like Rossbach et al.’s [RHW10b] looked at students over long periods of time, whereas ours

was conducted in the lab over a few hours. As such, ours is more a measurement of initial ease of use for

students than it is long-term measurement of learning or educational outcomes. Both kinds of studies have

pros and cons. In studies like Rossbach et al.’s, time measurements are probably better for understanding

learning, but they also lack considerably in control, making causality di�cult to determine. Studies like ours

have the opposite problem. While we can control the setting and variables carefully, our results may not yield

the same e↵ects in the field. Ultimately, we think the well-known medical scholar Bradford-Hill’s [Mar00]
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ideas of ’coherence’ make sense. In e↵ect, fully understanding programming language usability will likely

require various kinds of methodologies and replication from independent teams to ensure correctness. Our

work has revealed trade-o↵s about the impact of the paradigms, but is not the end of the story.

The choice of language and syntax for a programming language study of this kind could have an unknown

impact on the participants, particularly with di↵erences in previous experience with the given language. We

chose the Quorum language as a neutral isomorphic option to try to control for previous experience since the

participants had little to no experience with it. The size or impact of any novelty e↵ect of this decision is

not known or measured in this experiment and could have been di↵erent between the two paradigm groups.

4.5 Conclusion

In this study we have found that programming accuracy for student programmers is about the same for

thread-based and process-based paradigms when working on simple tasks, but that students had trouble

with the process approach if more channels were required, as they scored 35 percentage points lower in

the final task. The Token Accuracy Map technique provided evidence that the root cause of the lower

accuracy score may have been a di�culty in comprehending the complexity of the channel communication.

A teaching strategy tailored to increase understanding of the synchronous communication may improve

student understanding of the process paradigm in complex situations. Although this experiment was limited

to three basic tasks in parallel computing, it was designed to contribute to the overall body of experimental

work on parallelism and programming languages, not to pass an overall judgment on threads vs. process-

oriented computing.

While Token Accuracy Maps, as they are described in this paper, have limitations, they proved useful as a

tool to gain insight into the overall accuracy of students when working on these tasks, as well as a mechanism

to investigate which specific parts of the program were problematic for the students. TAMs might prove

useful in future studies to track participant progress through tasks by utilizing time-slice data and to find

more information about which parts of programming language syntax are causing problems for programmers.
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Chapter 5

GPU Programming Productivity In

Di↵erent Abstraction Paradigms: A

Randomized Controlled Trial

Comparing CUDA and Thrust

Coprocessor architectures in High Performance Computing (HPC) are prevalent in today’s scientific com-

puting clusters and require specialized knowledge for proper utilization. Various alternative paradigms for

parallel and o✏oad computation exist, but little is known about the human factors impacts of using the

di↵erent paradigms. We conducted a randomized controlled trial to test the hypothesis that students pro-

gramming in a paradigm using a higher level abstraction approach will be more productive than students

using a lower level abstraction paradigm. With computer science student participants from the University of

Nevada, Las Vegas with no previous exposure to GPU programming, our study compared NVIDIA CUDA

C/C++ as a control group (lower abstraction) and the Thrust library (higher abstraction). The designers

of Thrust claim this higher level of abstraction enhances programmer productivity. The trial was conducted

on 91 participants and was administered through our computerized testing platform. While the study was

narrowly focused on the basic steps of an o✏oaded computation problem and was not intended to be a

comprehensive evaluation of the superiority of one approach or the other, we found evidence that although

Thrust is at a higher level of abstraction, the abstractions tended to be confusing to students and in several

cases diminished productivity. Specifically, higher level abstractions in Thrust for i.) memory allocation

through a C++ Standard Template Library-style vector library call, ii.) memory transfers between the host

and GPU coprocessor through an overloaded assignment operator, and iii.) execution of an o✏oaded routine
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through a generic transform library call instead of a CUDA kernel routine all performed either equal to or

worse than a lower level abstraction in straight CUDA.

5.1 Introduction

Virtually every High Performance Computing (HPC) cluster architecture in use in the world today is utilizing

some type of multiple coprocessor arrangement (either in a Graphics Processing Unit (GPU) card from

NVIDIA [Cor17d] or AMD [AMD17] or a straight coprocessor card like the Intel Xeon PhiTM Coprocessor

Card [Cor17c]) attached to a host node in order to achieve their highest rated Giga- or Peta-FLOP peak

performance [KES+09]. This o✏oad coprocessor architecture requires specialized programming skills because

of the need for memory and cache management to place the data so that it is accessible to the processing

cores for computation. There are a variety of parallel programming paradigms available depending on the

hardware environment and programmer preference, including NVIDIA’s CUDA [Cor17e], the open standard

OpenCL from the Khronos Group [Gro17], OpenMP [Boa17], Intel’s Threading Building Blocks [Cor17b]

and Cilk Plus [Cor17a] to name a few. These libraries and models provide generally similar functionality to

manage capabilities like o✏oading computation and thread management, but they do so in di↵erent ways

with di↵erent syntax and compiler instructions.

In order to exercise the low level control and data manipulation often needed for HPC applications, program-

mers are frequently required to mix and match the paradigms to obtain their desired result. The complexity

of this type of programming and the volume of specialized knowledge required, along with the redundancy

of choices available, provides a potentially compelling incentive to maximize the relative productivity of pro-

grammers. This paper describes a study which compared the higher level abstractions of the Thrust parallel

algorithms library (Thrust) [Gab16] to lower level CUDA in a series of tasks required to o✏oad code to a

GPU processor. Thrust is an open source high-level interface which the authors claim “greatly enhances pro-

grammer productivity while enabling performance portability between GPUs and multicore CPUs [HB15].”

To be clear, we are not the authors of these tools and have no vested interest in the outcome of our study.

Thus, we evaluate the Thrust designers’ claim in a randomized controlled trial using a simple example with

new student learners. We use the labels “high” and “low” for the types of abstraction we tested in order to

mirror language used in the Thrust website in citing Thrust’s design intent. Readers may understandably

consider and debate abstraction layers di↵erently than the Thrust team, but we found it reasonable and so

use the labels accordingly in this paper.

We investigated four key research questions:

• RQ1: Does a high level abstraction for memory allocation on a host/coprocessor device improve

programmer performance?

• RQ2: Does a high level abstraction for iterating over an array improve programmer performance?
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• RQ3: Does a high level abstraction (assignment overloading) for memory copy to/from host/copro-

cessors improve programmer performance?

• RQ4: Does a high level abstraction for a kernel routine on a GPU improve programmer performance?

One of the aims of our research program is to contribute to the development of research processes in com-

puting education research (CER) which utilize empirical scientific methods accepted in other scientific dis-

ciplines, as described by Malmi, et al. [MSB+14] We also strongly believe CER needs to develop its own

discipline-based theories because important issues such as how students understand programming concepts

cannot easily be explained by applying general education theories. An important motivation for this study

was to provide evidence on the human factors impacts for computing education, especially in teaching ad-

vanced concepts to students with previous formalized programming instruction. Our long term aim is to help

develop and test CER-specific, data-driven theories with predictive capability which can ultimately be used

by programming language designers as well as by educators to develop more e↵ective teaching strategies.

As our discipline advances scientifically we seek to contribute to the development of standards, alongside

other educational researchers, which can measure the impacts and e↵ects of di↵erent design and instructional

methodologies. This study is one brick in the wall of an overall approach to computer science research and is

not meant to be conclusive or comprehensive on the topic of abstraction or GPU programming paradigms.

5.2 Methods

We used an automated testing program to conduct an RCT on students at the University Nevada, Las Vegas

to evaluate programming productivity and learning of a GPU programming task. We compared the time

to completion, success rates and other accuracy measures of students who completed 6 programming tasks

using either CUDA or Thrust during March and April 2018.

The participants were given 10 minutes to review a set of instructions, which they retained during the study,

that provided details on how to complete the tasks using the C++ language and their group paradigm.

The instructions included variable types, method syntax, array syntax, looping, and library calls and had

common descriptions for how to allocate and deallocate memory on the host CPU and GPU, how to invoke

an o✏oaded method and names of available library calls. Specific details varied only where required for

the paradigm being used. The instructions were designed to provide all information necessary to solve the

programming tasks, but not give ‘cut-and-paste’ material which could be used to guess at a correct answer.

The instructions were designed to be as consistent as possible in an e↵ort to remove di↵erence in instruction

as a factor in the study. The instruction sheets for each group are provided in the Appendix to this paper.

The testing program served as an automated proctor and initiated the timed testing protocol by presenting

the tasks at consistent pre-set times in the student’s browser. The user display included a testing screen with

three areas: a reference area for instructions, an editable area for coding and an output area for feedback.
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Figure 5.1: Automated Testing Application.

A screenshot of the testing program in a browser is shown in Figure 5.1. In addition to submitted samples,

the testing application logs a variety of event-based data, including periodic snapshots, click activity, typing

activity, copy and paste activity and focus change activity.

The application had a compile button which sent the code contained in the input area to a remote workstation

equipped with a CUDA-enabled GPU with the necessary libraries and tools installed to compile and execute

the program in either CUDA or using the Thrust library. The compiler or program output was then returned

to the testing application and displayed in the output area and the code submission and output was logged.

If the student did not solve the task after seven minutes an additional button became visible with the option

to give up and move to the next task. An automated timeout for the task occurred after a pre-set period of

time.

5.2.1 Trial Design

The randomized controlled trial used a two factor between subjects design where the programming tasks and

instruction were controlled. Participants were randomly placed in one of the two groups and then completed

the tasks on the testing platform which consistently administered uniform instruction and time allotments
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Level in School CUDA Thrust Total

Sophomore (Second Year) 8 8 16

Junior (Third Year) 20 23 43

Senior (Fourth Year) 15 15 30

Graduate 1 1 2

Total 44 47 91

Table 5.1: Participants by Level in School.

Gender CUDA Thrust Total

Female 5 10 15

Male 39 37 76

Total 44 47 91

Table 5.2: Participants by Gender.

Language CUDA Thrust Total

English 30 33 63

ESL 14 14 28

Total 44 47 91

Table 5.3: Participants by Native Language.

and tracked periodic code snapshots, compiler submissions and time to completion on an automatic basis.

The coding tasks and source code for the study were inspired by guides and tutorials at the NVIDIA and

Thrust websites [Cor17e, Har17, Gab16].

5.2.2 Recruitment

Subjects were recruited from seven di↵erent classes in the Computer Science Department including courses

in systems programming, operating systems, programming languages, algorithms and compilers. In every

case, the prerequisite courses included Computer Science I and II, which are taught in C/C++. The student

participants were all in their second, third or fourth year of study and were given extra credit in the courses

as an incentive to participate. Tables 5.1, 5.2 and 5.3 show the breakdown of participant by education level,

gender and native language.

5.2.3 Pilot Testing and the Doubling Method

Since the design of empirical testing methods for randomized controlled trials in CER is both new and

complex, we adhere to a strict pilot testing framework as a core element of our research methods. We

use an iterative approach, which we call the Doubling Method, where we test our experiment design, task

instructions, measurement techniques and timing constraints on at least three series of participants in advance

of the formalized study. We start with a preliminary testing of at least one participant in each group in
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phase one and then make changes in our study design before iterating the process in phases two and three.

In each successive phase, we at least double the number of participants in each group before we iterate the

process. For this study, the pilot phases consisted of 2, 4 and 10 participants in the Spring of 2017 so that

we could fine tune the tasks, instructions and timing.

5.2.4 Study Setting

The participants in the study completed the testing on their own computers in a web browser without any

direct observation. The timing and ordering was administered and enforced by the computer and was applied

consistently. Students were instructed to turn o↵ cell phones and televisions and complete the study in a

quiet environment, however there is no way to know if the testing conditions were similar for all participants

or if any students consulted external resources for assistance in completing the tasks.

5.2.5 Intervention

The intervention for this trial was the CUDA or the Thrust programming paradigm group. Each group

received instructions within the application based on the language group to which they were assigned. The

starting code for each task and group contained the correct code from any previous tasks so that a participant

who failed to complete a previous task was not at a disadvantage. Task 6 had custom comments for the

CUDA group to explain how to include the Add kernel function and how to invoke it in CUDA. These

instructions were not necessary in Thrust because of the thrust::plus<type> function that can be called

with thrust::transform(..) to perform the task.

Overall, the tasks flowed sequentially as the user went through the steps needed to perform the o✏oaded

computation. Table 5.4 describes each of the successive tasks in detail as well as the specific abstractions

tested in each of the groups. The six steps were to learn to use any required libraries (Task 1: Figure 5.2),

allocate memory on both the CPU (Task 2: Figure 5.3, 5.4) and GPU (Task 4: Figure 5.7, 5.8), iterate over

the array data (Task 3: Figure 5.5, 5.6), move data between the CPU and GPU in both directions (Task

5: Figure 5.9, 5.10 and execute a method on the GPU (Task 6: Figure 5.11, 5.12). The task instructions

in the starting code were identical, however the language intervention had significant di↵erences in syntax,

design and complexity which formed the essence of and motivation for this study. The starting code for each

task indicated areas for the participant to write their code to complete the task. The header file checkX Y.h

interface was provided to check the participant’s answer and allow them to move on to the next task. The

code used to check the answer was compiled and linked in on the remote GPU workstation and was not

provided to the participants since it would provide clues about the correct responses to the tasks.
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Detailed Task Description and Abstractions Tested
Task Item Detail

1 Description:
Warm up task consisting of a basic memory declaration and a standard
library call.

Abstraction: None.

CUDA: Use a #include and std::cout

Thrust: Identical solution to CUDA

2 Description: Allocate memory for two arrays on the host.

RQ1 Abstraction: Memory allocation on the host.

CUDA: Standard c malloc declarations with pointers.

Thrust: Library call using thrust::host vector similar to C++ STL vector

3 Description: Populate the host arrays.

RQ2 Abstraction: Library call to replace for loop, but possible without.

CUDA: Standard c for loop assigning value to array with index: hostX[i] = 1.0.

Thrust:
Same as CUDA or use thrust::fill(..) with #include for Thrust
library.

4 Description: Allocate memory for two arrays on the GPU.

RQ1 Abstraction: Memory allocation on the GPU.

CUDA:
Requires pointer declaration and then using cudaMalloc to allocate GPU
memory.

Thrust: Identical to Task 2 solution except call to thrust::device vector

5 Description: Copy the contents of the host arrays to the GPU memory.

RQ3 Abstraction: Overloaded assignment operator.

CUDA: Requires using cudaMemcpy to copy array values with 4 parameters.

Thrust:
Overloaded operator copies the full array with just pointers: devX =

hostX

6 Description: Add the arrays on the GPU and copy the GPU array to the host array.

RQ3-4 Abstraction:
1. Library call to replace a kernel routine and 2. overloaded assignment
operator.

CUDA:

Required writing a kernel routine for adding arrays on the GPU, calling
the kernel in CUDA format, synchronizing the device with
cudaDeviceSynchronize() and then cudaMemCpy to copy the array back
to the host.

Thrust:
Library call using thrust::transform(..) with 5 parameters to add two
vectors on the GPU followed by a memory copy identical to Task 5.

Table 5.4: Task Abstractions.

52



1 /*
2 * Instructions:
3 * 1. Use the ’iostream ’ library , which is part of the standard
4 * library with the namespace ’std ’
5 * 2. Declare a float variable called ’maxError ’ with a value
6 * of 0.0
7 * 3. Output the ’maxError ’ value to the terminal:
8 * a. Call the function ’cout ’ from the ’iostream ’ library
9 * b. Follow the ’cout ’ function by the stream operator ’<<’

10 * followed by the variable name to output
11 */
12

13 //YOUR INCLUDES HERE
14

15 /* SOLUTION BEGIN
16 #include <iostream >
17 ** SOLUTION END */
18

19 int main(void) {
20 //YOUR CODE HERE
21

22 /* SOLUTION BEGIN
23 float maxError = 0;
24 std::cout << maxError;
25 ** SOLUTION END */
26

27 return 0;
28 }

Figure 5.2: Task 1: Identical for Both Groups

1 /*
2 * Instructions:
3 * 1. Allocate memory on the host computer for two arrays of
4 * type float named hostX and hostY with N elements.
5 * 2. Put any include statements , if necessary , at the top
6 * of your code.
7 */
8

9 //YOUR INCLUDES HERE
10

11 #include "check2_1.h"
12 int main(void) {
13 int N = 1048576;
14 //YOUR CODE HERE
15

16 /* SOLUTION BEGIN
17 float* hostX = (float *) malloc(N * sizeof(float));
18 float* hostY = (float *) malloc(N * sizeof(float));
19 ** SOLUTION END */
20

21 check2_1(N, hostX , hostY);
22 return 0;
23 }

Figure 5.3: Task 2 : CUDA Group

5.2.6 Randomization

The randomization for group selection was done by the computer using the rand() function in php, which

utilizes the Mersenne Twister algorithm. The groups were segmented by year in school in order to keep the

groups balanced. The testing application maintained a persistent table to track the ordering of participants.

The program chooses the order of each pair of participants for each group so that the first language is

randomly chosen each time a pair of participants completes the classification survey. Since the test is

not administered by a human, there is no interaction with the group ordering and it requires no human

intervention. The study was a double blind protocol because the computer server, as the automated proctor,

assigned the groups based on a randomization protocol without any intervention by the research team.
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1 /*
2 * Instructions:
3 * 1. Allocate memory on the host computer for two arrays of
4 * type float named hostX and hostY with N elements.
5 * 2. Put any include statements , if necessary , at the top
6 * of your code.
7 */
8

9 //YOUR INCLUDES HERE
10

11 /* SOLUTION BEGIN
12 #include <thrust/host_vector.h>
13 ** SOLUTION END */
14

15 #include "check2_2.h"
16 int main(void) {
17 int N = 1048576;
18 //YOUR CODE HERE
19

20 /* SOLUTION BEGIN
21 thrust :: host_vector <float > hostX(N);
22 thrust :: host_vector <float > hostY(N);
23 ** SOLUTION END */
24

25 check2_2(N, hostX , hostY);
26 return 0;
27 }

Figure 5.4: Task 2 : Thrust Group

1 /*
2 * Instructions:
3 * 1. Assign a value of 1.0 to each element of the hostX
4 * array and 2.0 to each element of the hostY array
5 * using a for loop.
6 * 2. Put any include statements , if necessary , at the top
7 * of your code.
8 */
9

10 //YOUR INCLUDES HERE
11

12 #include "check3_1.h"
13 int main(void) {
14 int N = 1048576;
15 float* hostX = (float *) malloc(N * sizeof(float));
16 float* hostY = (float *) malloc(N * sizeof(float));
17 //YOUR CODE HERE
18

19 /* SOLUTION BEGIN
20 for (int i = 0; i < N; i++) {
21 hostX[i] = 1.0;
22 hostY[i] = 2.0;
23 }
24 ** SOLUTION END */
25

26 check3_1(N, hostX , hostY);
27 return 0;
28 }

Figure 5.5: Task 3 : CUDA Group

5.3 Results

5.3.1 Baseline Data

A total of 98 students completed at least one task in the experiment. The results of 7 students were excluded

either because of incomplete data for all the tasks, a program malfunction or for restarting the experiment.

After the invalidation phase, there were 91 participants remaining with 44 in the CUDA group and 47 in
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1 /*
2 * Instructions:
3 * 1. Assign a value of 1.0 to each element of the hostX
4 * array and 2.0 to each element of the hostY array
5 * using a for loop.
6 * 2. Put any include statements , if necessary , at the top
7 * of your code.
8 */
9

10 //YOUR INCLUDES HERE
11

12 /* SOLUTION BEGIN
13 #include <thrust/host_vector.h>
14 ** SOLUTION END */
15

16 #include "check3_2.h"
17 int main(void) {
18 int N = 1048576;
19 thrust :: host_vector <float > hostX(N);
20 thrust :: host_vector <float > hostY(N);
21 //YOUR CODE HERE
22

23 /* SOLUTION BEGIN
24 for (int i = 0; i < N; i++) {
25 hostX[i] = 1.0;
26 hostY[i] = 2.0;
27 }
28 ** SOLUTION END */
29

30 check3_2(N, hostX , hostY);
31 return 0;
32 }

Figure 5.6: Task 3 : Thrust Group

1 /*
2 * Instructions:
3 * 1. Allocate memory on the GPU for two arrays of type float
4 * named devX and devY with N elements.
5 * 2. Put any include statements , if necessary , at the top
6 * of your code.
7 */
8

9 //YOUR INCLUDES HERE
10

11 #include "check4_1.h"
12 int main(void) {
13 int N = 1048576;
14 //YOUR CODE HERE
15

16 /* SOLUTION BEGIN
17 float *devX = NULL;
18 cudaMalloc ((void **) &devX , N * sizeof(float));
19 float *devY = NULL;
20 cudaMalloc ((void **) &devY , N * sizeof(float));
21 ** SOLUTION END */
22

23 check4_1(N, devX , devY);
24 return 0;
25 }

Figure 5.7: Task 4 : CUDA Group

the Thrust group.. Table 5.5 shows the mean time to completion for each of the six tasks along with the

standard deviation of each task by group.

Table 5.6 shows the number of successful final task results, the number of incorrect compiles prior to a

successful result and the average number of incorrect compiles per successful result for both the CUDA and

Thrust group. The CUDA group had a lower number of incorrect compile attempts on Tasks 2 (4.1 CUDA

vs 6.1 Thrust), 3 (1.1 CUDA vs 2.8 Thrust), 5 (2.2 CUDA vs 2.3 v) and 6 (7.9 CUDA vs 10.0 Thrust) while
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1 /*
2 * Instructions:
3 * 1. Allocate memory on the GPU for two arrays of type float
4 * named devX and devY with N elements.
5 * 2. Put any include statements , if necessary , at the top
6 * of your code.
7 */
8

9 //YOUR INCLUDES HERE
10

11 /* SOLUTION BEGIN
12 #include <thrust/device_vector.h>
13 ** SOLUTION END */
14

15 #include "check4_2.h"
16 int main(void) {
17 int N = 1048576;
18 //YOUR CODE HERE
19

20 /* SOLUTION BEGIN
21 thrust :: device_vector <float > devX(N);
22 thrust :: device_vector <float > devY(N);
23 ** SOLUTION END */
24

25 check4_2(N, devX , devY);
26 return 0;
27 }

Figure 5.8: Task 4 : Thrust Group

1 /*
2 * Instructions:
3 * 1. Copy the array data from the host CPU to the GPU
4 * 2. Put any include statements , if necessary , at the top
5 * of your code.
6 */
7

8 //YOUR INCLUDES HERE
9

10 #include "check5_1.h"
11 int main(void) {
12 int N = 1048576;
13 float* hostX = (float *) malloc(N * sizeof(float));
14 float* hostY = (float *) malloc(N * sizeof(float));
15 float *devX = NULL;
16 cudaMalloc ((void **) &devX , N * sizeof(float));
17 float *devY = NULL;
18 cudaMalloc ((void **) &devY , N * sizeof(float));
19 for (int i = 0; i < N; i++) {
20 hostX[i] = 1.0;
21 hostY[i] = 2.0;
22 }
23 //YOUR CODE HERE
24

25 /* SOLUTION BEGIN
26 cudaMemcpy(devX , hostX , N*sizeof(float), cudaMemcpyHostToDevice);
27 cudaMemcpy(devY , hostY , N*sizeof(float), cudaMemcpyHostToDevice);
28 ** SOLUTION END */
29

30 check5_1(N, devX , devY);
31 return 0;
32 }

Figure 5.9: Task 5 : CUDA Group

the Thrust group had less errors on the identical warm up Task 1 (1.4 CUDA vs 1.0 Thrust) and 4 (2.5

CUDA vs 1.5 Thrust).
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1 /*
2 * Instructions:
3 * 1. Copy the array data from the host CPU to the GPU
4 * 2. Put any include statements , if necessary , at the top
5 * of your code.
6 */
7

8 //YOUR INCLUDES HERE
9

10 /* SOLUTION BEGIN
11 #include <thrust/host_vector.h>
12 #include <thrust/device_vector.h>
13 ** SOLUTION END */
14

15 #include "check5_2.h"
16 int main(void) {
17 int N = 1048576;
18 thrust :: host_vector <float > hostX(N);
19 thrust :: host_vector <float > hostY(N);
20 thrust :: device_vector <float > devX(N);
21 thrust :: device_vector <float > devY(N);
22 for (int i = 0; i < N; i++) {
23 hostX[i] = 1.0;
24 hostY[i] = 2.0;
25 }
26 //YOUR CODE HERE
27

28 /* SOLUTION BEGIN
29 devX = hostX;
30 devY = hostY;
31 ** SOLUTION END */
32

33 check5_2(N, devX , devY);
34 return 0;
35 }

Figure 5.10: Task 5 : Thrust Group

CUDA Thrust

Task N Mean SD N Mean SD

1 44 158.3 109.1 47 234.3 234.8

2 44 432.9 335.1 47 735.3 253.9

3 44 224.5 257.8 47 520.1 352.2

4 44 330.5 303.6 47 437.0 334.6

5 44 602.8 330.4 47 489.9 345.3

6 44 1,331.7 364.0 47 1,313.9 362.6

Total 44 513.5 283.3 47 621.7 313.9

Table 5.5: Time to Completion by Group and Task.

5.3.2 Quantitative Analysis

The data was analyzed with a repeated measures ANOVA with a single within subjects factor (the 6 tasks)

and two between subjects factors (the paradigm groups and native language). Mauchly’s test indicated

that the assumption of sphericity had been violated (�2(2) = .691, p = .005) therefore degrees of freedom

were corrected using Greenhouse-Geisser estimates of sphericity (✏ = 0.87). The main e↵ect of group, F(1,

87)=8.03, p=.006, (⌘2p = .037) was qualified by an interaction between group and task, F(5, 435)=8.94,

p < .001, (⌘2p = .056). We examined other between subjects measures, including level in school, gender and

native language, but found no significant e↵ects.
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1 /*
2 * Instructions:
3 * 1. Run an "add" operation on the GPU by adding the values
4 * in devX to devY.
5 * 2. Put any include statements , if necessary , at the top of
6 * your code.
7 * 3. Copy the contents of the resulting array on the GPU
8 * (devY) back to the CPU memory (hostY)
9 */

10

11 //YOUR INCLUDES HERE
12

13

14 #include "check6_1.h"
15 /*
16 * Write a function called ’add ’ which will be run on the GPU.
17 * It should have a ’void ’ return type and three parameters:
18 * 1 for the number of items in the arrays and 2 for the
19 * pointers of the arrays to add.
20 * The addition should be of the form Y = Y + X
21 */
22 //YOUR CODE HERE
23

24 /* SOLUTION BEGIN
25 __global__
26 void add(int n, float* x, float* y) {
27 for (int i = 0; i < n; i++) {
28 y[i] = x[i] + y[i];
29 }
30 }
31 ** SOLUTION END */
32

33 int main(void) {
34 int N = 1048576;
35 float* hostX = (float *) malloc(N * sizeof(float));
36 float* hostY = (float *) malloc(N * sizeof(float));
37 float *devX = NULL;
38 cudaMalloc ((void **) &devX , N * sizeof(float));
39 float *devY = NULL;
40 cudaMalloc ((void **) &devY , N * sizeof(float));
41 for (int i = 0; i < N; i++) {
42 hostX[i] = 1.0;
43 hostY[i] = 2.0;
44 }
45 cudaMemcpy(devX , hostX , N*sizeof(float), cudaMemcpyHostToDevice);
46 cudaMemcpy(devY , hostY , N*sizeof(float), cudaMemcpyHostToDevice);
47 // invoke the ’add ’ function with 1 block/grid and
48 // 1 thread/block
49 //YOUR CODE HERE
50

51 /* SOLUTION BEGIN
52 add <<<1,1>>>(N, devX , devY);
53 cudaDeviceSynchronize ();
54 cudaMemcpy(hostY , devY , N*sizeof(float), cudaMemcpyDeviceToHost);
55 ** SOLUTION END */
56

57 check6_1(N, hostY);
58 return 0;
59 }

Figure 5.11: Task 6 : CUDA Group

The mean by group and task shown in the plot in Figure 5.14 as well as Table 5.5 depicts the di↵erences

most apparent in tasks 2 and 3. Pairwise t-tests using a Bonferroni correction showed statistically signif-

icant di↵erences in means in tasks 2 and 3, but not in any other task. Task 2 observations of the CUDA

group (mean=432.9, SD=335.1) compared to the Thrust Group (mean=735.3, SD=253.9) was significant

at t(85.3)=-6.05, p < .001. Task 3 observations of the CUDA group (mean=224.5, SD=257.8) compared to

the Thrust Group (mean=520.1, SD=352.2) was significant at t(72.4)=-5.47, p < .001. The e↵ect of task

was significant, F(5, 435)=186.60, p < .001, (⌘2p < .556), however this does not hold much meaning since
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1 /*
2 * Instructions:
3 * 1. Run an "add" operation on the GPU by adding the values
4 * in devX to devY.
5 * 2. Put any include statements , if necessary , at the top of
6 * your code.
7 * 3. Copy the contents of the resulting array on the GPU
8 * (devY) back to the CPU memory (hostY)
9 */

10

11 //YOUR INCLUDES HERE
12

13 /* SOLUTION BEGIN
14 #include <thrust/host_vector.h>
15 #include <thrust/device_vector.h>
16 #include <thrust/transform.h>
17 * SOLUTION END */
18

19 #include "check6_2.h"
20 int main(void) {
21 int N = 1048576;
22 thrust :: host_vector <float > hostX(N);
23 thrust :: host_vector <float > hostY(N);
24 thrust :: device_vector <float > devX(N);
25 thrust :: device_vector <float > devY(N);
26 for (int i = 0; i < N; i++) {
27 hostX[i] = 1.0;
28 hostY[i] = 2.0;
29 }
30 devX = hostX;
31 devY = hostY;
32 //YOUR CODE HERE
33

34 /* SOLUTION BEGIN
35 thrust :: transform(devY.begin(), devY.end(), devX.begin(), devY.begin (), thrust ::plus <float >());
36 hostY = devY;
37 ** SOLUTION END */
38

39 check6_2(N, hostY);
40 return 0;
41 }

Figure 5.12: Task 6 : Thrust Group

the tasks were of varying complexity. It does indicate that some tasks were clearly more di�cult since the

actual amount of code that needed to be written was only a few lines in every case.

A particular task ended in one of the following ways: i) the user successfully completed the task, ii) a

predetermined timer expired (15 min for tasks 1-5 and 25 min for task 6) or iii) the participant gave up

after at least 7 minutes of trying (in which case the task was assigned the full time). Table 5.7 shows the

number of participants in each of the three possible ending conditions for each task by group. The CUDA

group showed a higher successful completion percentage compared to Thrust across all tasks (69% compared

to 57%), fewer time out events (24% compared to 35%) and fewer give up events (7% compared to 8%).

Thrust participants had a more di�cult time on Task 2 (36% compared to 73%) an Task 3 (57% compared

to 89%)and all participants had a di�cult time on Task 6 (20% for CUDA and 26% for Thrust).
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Figure 5.13: Mean Time by Group.

CUDA Thrust

Task
Success

Results

Total

Errors

Avg.

Errors

Success

Results

Total

Errors

Avg.

Errors

1 44 61 1.4 43 45 1.0

2 32 130 4.1 17 103 6.1

3 39 41 1.1 27 75 2.8

4 37 92 2.5 32 48 1.5

5 21 47 2.2 29 68 2.3

6 9 71 7.9 12 120 10.0

Table 5.6: Compiler Errors for Successful Results.
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COMPLETE TIME OUT GIVE UP SUCCESS RATE

Task CUDA Thrust CUDA Thrust CUDA Thrust CUDA Thrust

1 44 43 0 2 0 2 100% 91%

2 32 17 6 24 6 6 73% 36%

3 39 27 4 17 1 3 89% 57%

4 37 32 6 10 1 5 84% 68%

5 21 29 19 16 4 2 48% 62%

6 9 12 29 30 6 5 20% 26%

Total 182 160 64 99 18 23 Avg. Avg.

% 69% 57% 24% 35% 7% 8% 69% 57%

Table 5.7: Number of Participants by Task Result for each Paradigm.

5.4 Discussion

5.4.1 Overall Interpretation

The results of this experimental study present some interesting lessons for future research and we must be

cautious to place the findings in a suitable overall context. As a baseline study in an important area we are

not seeking to comprehensively and conclusively make a determination that either i.) CUDA or Thrust or

ii.) low level or high level abstraction is superior for programmer productivity. Furthermore, as objective

researchers, we are not vested in the result. Any such conclusion would require many studies under many

di↵erent interventions and study designs. This is a single study with a fixed method that sought to control

for threats to internal validity in its specific design, but the conditions which we attempted to standardize

could have impacted the results in an unintended way. These impacts can only be learned over time with

the application of the scientific method to learn and build upon previous studies before conclusions can be

drawn and predictive theories developed.

In this study, the observed results require us to reject the core hypothesis that using a higher level abstraction

paradigm for GPU programming produces productivity benefits. In each of the successive tasks in our study,

the CUDA group performed at least equal to the Thrust group and there is clear empirical evidence of

superior performance by the CUDA group in some tasks. We must be very careful not to overstate that

finding, however, because it applies to this specific task of CUDA and Thrust for students during their first

GPU programming experience with our single tested instruction method.

5.4.2 Research Questions

RQ1: C++ STL-style library call as an abstraction for memory allocation

Our first question was tested in both Task 2 (memory allocation on host) and Task 4 (memory allocation

on GPU). For Task 2, the CUDA group used a standard malloc call in C:
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float* hostX = (float *) malloc(N * sizeof(float));

compared to the Thrust group that used an abstraction virtually identical to the C++ STL-style vector

call for memory allocation:

thrust::host vector<float> hostX(N);

We observed a significantly better student performance on Task 2 for the CUDA group (mean=432.9,

SD=335.1, avg. errors=4.1) compared to the Thrust Group (mean=735.3, SD=253.9, avg. errors=6.1)

which indicated that the lower level abstraction approach was less confusing to students. This result may

have been the result of student familiarity with a standard malloc call compared to a C++ STL-style library

call, but the di↵erences were significant.

For Task 4,the CUDA group first had to create a pointer in standard C and then use more complicated

CUDA-specific syntax to allocate the memory on the GPU, using a likely unfamiliar void** type cast:

float *devX = NULL;

cudaMalloc((void**) &devX, N * sizeof(float));

compared to the Thrust group that used an abstraction identical to the requirement in Task 2 except for

the substitution of host vector with device vector in the syntax:

thrust::device vector<float> devX(N);

It should also be noted that the Thrust group viewed the correct syntax for this call as sca↵olded code in

Task 3. Given the complexity and newness of the CUDA solution for Task 4 and the similarity between

Task 2 and Task 4 for Thrust, we expected to find that the Thrust group would perform better on Task 4.

Although we saw higher relative improvement in the Thrust group from Task 2 to Task 4 (mean reduced

by 363.3, compiles reduced by 4.6) compared to the CUDA group (mean reduced by 102.4, average errors

reduced by 1.0), both groups improved and the CUDA group still outperformed the Thrust group in overall

time to completion. The Thrust group did have less compiler errors on average for this task (1.5) compared

to the CUDA group (2.5) however. In both cases of memory abstraction then, even despite higher similarity

of solution code for the Thrust group between the two tasks, we observed better performance on the lower
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level abstraction of CUDA than on the higher level abstraction of Thrust which contradicted our expectation.

RQ2: Library call for iterating over an array as an abstraction for a for loop

Our second question was tested in Task 3 where the students were asked to fill the arrays they declared in

Task 2 with a single float value. Since the task was on the host computer, the task could be performed

with either a standard for loop or in the case of the Thrust group, optionally using the thrust::fill(..)

library call. Since the for loop was highly familiar for the students, we expected to see close similarity in

the results between the two groups. Our observed values for Task 3 were significantly in favor of the CUDA

group (mean=224.5, SD=257.8, avg. errors=1.1) compared to the Thrust Group (mean=520.1, SD=352.2,

avg. errors=2.8). Since the Thrust abstraction so closely parallels the C++ STL-style vector call, this was

not just a GPU specific knowledge issue, but points to a more general student confusion with the specific

higher level abstraction.

RQ3: Assignment overloading as an abstraction for memory copy between host and GPU

Our third question was tested in Task 5 (copy array to GPU) and Task 6 (copy array from GPU to host).

For Task 5, the CUDA group used CUDA specific syntax to copy the array to the GPU:

cudaMemcpy(devX, hostX, N*sizeof(float), cudaMemcpyHostToDevice);

compared to the Thrust group which used operator overloading for the assignment operator (=) as an ab-

straction for a more complex memory copy:

devX = hostX;

The simplified syntax of the Thrust solution compared to the CUDA solution led us to expect superior

performance in the Thrust group for this abstraction. The performance of the CUDA group (mean=602.8,

SD=330.4, avg. errors=2.2), although worse than the Thrust group (mean=489.9, SD=345.3, avg. er-

rors=2.3), was not significantly di↵erent. Task 6 used constructs very similar to Task 5 for this abstraction,

primarily rearranging parameters and variables, and we observed virtually identical results between the

groups. Our results suggest that for this research question the assignment operator overloading abstraction
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did not provide a benefit to programmer productivity but also did not appear to harm it.

RQ4: Library call as an abstraction for writing and executing a kernel routine

Our fourth question was tested in Task 6 which required a much more complex solution than the previous

tasks. Since both RQ3 and RQ4 were simultaneously addressed in the solution, the results may also have

intermingled. Furthermore, the low success rate on Task 6 (20% for CUDA and 26% for Thrust) compared to

previous tasks probably makes our observations less conclusive. Since the overall results were similar for the

CUDA group (mean=1,331.7, SD=364.0, avg. errors=7.9) compared to the Thrust group (mean=1,313.9,

SD=362.6, avg. errors=10.0), we can only say that there did not appear to be any advantage to the higher

level abstraction of Thrust. This was not a result we expected, however, because the single line Thrust

library call:

thrust::transform(devY.begin(),devY.end(),devX.begin(),devY.begin(),thrust::plus<float>());

seemed less complicated than the CUDA requirement to both write a kernel routine with CUDA-specific

syntax:

global

void add(int n, float* x, float* y)

for (int i = 0; i < n; i++)

y[i] = x[i] + y[i];

as well as the CUDA requirements to both invoke the kernel operator in an unfamiliar format as well as

synchronize the host and GPU before copying the result back to the host:

add<<<1,1>>>(N, devX, devY);

cudaDeviceSynchronize();

5.4.3 General Threats to Validity

We must also interpret these results in the context of a thoughtful examination of how our study design

choices impact the study’s internal and external validity. The internal validity of a study represents whether
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any reasonable conclusions of causality can be drawn between the intentional variation of the independent

variable and the observed changes in the dependent variable. The external validity is the extent to which

any valid causality can be generalized to other cases. All empirical studies have threats to these forms of

validity and any conclusions that are drawn must be measured relative to the factors impacting validity.

This study conforms methodologically to long-studied traditions in the design of randomized controlled

trials, although these types of trials are still relatively new in the study of the human factors impacts of

programming languages, where study design is inherently di�cult and alternative approaches have yet to be

explored. In this study specifically, many threats to internal validity were controlled including:

• History - A two group design controls for history by comparing a treatment and control groups at

the same time with a single measurement.

• Maturation - A two group design with the same task set controls for a threat of the groups not

changing at the same rate. Our study was also performed in a single sitting and removed external

maturation e↵ects.

• Statistical Regression - The students were assigned to groups randomly by class year and not based

on any pre-test or demographic knowledge so statistical regression was unlikely to have caused any

threat to validity.

• Testing - A two group design with a single test eliminated testing as a threat to validity.

• Instrumentation - Our computerized testing system administered the study consistently and objec-

tively for each group and minimized the threat of instrumentation to validity.

• Selection - Randomized group assignment removes the risk of selection threatening validity since there

is no bias introduced.

• Experimental Mortality - In our study, 7 of 98 trial participants experienced mortality with 44 final

participants in the CUDA group and 47 in the Thrust group so there was not a significant threat to

validity from mortality.

• Design Contamination - Students generally undertook the study independently and everyone did

so in a single sitting as required by the computerized system, so there was only limited opportunity

for any interaction between the groups during the administration of the tasks. The students were not

all physically observed during the study however so it is possible that some contamination occurred

without our knowledge.

• Compensatory Rivalry - The participants had no knowledge that the study design had multiple

groups so were not likely to have tried to compare themselves to another group with any systematic

biased so this was not likely a threat to validity.
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Regarding this study specifically, the subject matter is not commonly taught in a university curriculum

so things like the clarity and method of instruction may play a role in performance. These results may

not be generalized to other universities where the curriculum is di↵erent (such as those where introductory

courses are taught in a language other than C/C++) or to scientists or professionals who may have some

related experience with coprocessors. Since this is the first study in this complex area, there are many

aspects to measurement, study design and instruction that may a↵ect our conclusions. The study was

designed to provide some insight into how students initially responded to the fundamental concept required

to use coprocessors (o✏oad computation) and the teaching implications for those basics, however, it does

not test alternate teaching methods or the impacts of complex computational algorithms with parallelism

considerations.

5.4.4 Instruction Methodology

The complexity of the task of study design cannot be overstated and this study yields some informative

examples for future research in computer science. One of the key study design decisions we made was to

control the method of instruction between the two groups as much as possible, knowing that it is decidedly

impossible to provide the exact same instructions to two groups of students to perform a task in two di↵erent

ways. In attempting to provide a common instruction sheet in the way that we chose, we could have

unintentionally biased the results in favor of one group or the other on some or all of the tasks. An

obvious area for future study would be to test other fixed instructional methods for the same tasks to see

if the observed results are similar. It is probable that our chosen instruction methodology introduced an

extraneous or confounding variable to the study that threatens its internal validity, but the extent of its

impact cannot be determined from this single study.

Our decision to include a single instruction sheet to both groups for a fixed period of time for their first

learning experience of a complex task was almost certainly a sub-optimal instruction method, but we were

not attempting to test the e↵ectiveness of the instruction method in this study. That would likely be an

interesting area for future exploration, but it is irrelevant to this particular evaluation. In future studies

we could imagine other ways to provide instruction to improve overall success rates, possibly including a

lecture or video describing the general steps required to complete the task before paradigm specific tasks were

introduced. Again, our interest was to study if there were measurable di↵erences in performance between

groups given the same instruction and while higher overall success rates would likely improve the overall

conclusiveness of the findings, it was not the subject of the study.

We also chose a generic common instruction technique for this study which prevented the participant from

copy-pasting code from the instruction sheet to the coding area. This decision was a response from a

previous study we conducted where we suspected copy-pasting was a confounding variable and we wanted

to control that risk on this study. As a result of this decision, however, students did not have the benefit
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of working code samples as reference which may have made them slower overall. Both groups had the same

experience however, so there should not have been a bias toward one group or the other. Nonetheless, several

students commented in an optional post-study survey that they felt they would have performed better if they

had access to this type of resource, suggesting that example-based instructional techniques might improve

performance. Study design necessarily includes making these di�cult and complex decisions and there are

no perfect answers.

5.4.5 Task Di�culty

In our study, high level abstraction performed worse than low level abstraction where our participants were

new student learners. It is possible that the e↵ect we observed may have been the result of high level

abstraction being more di�cult at first and only becoming easier later. One way to test this in the future

would be to include professionals compared to students who may have a firmer grasp on high level abstraction.

Similar to instruction method, we controlled this variable (programmer experience) but we did not intend

to conclusively anoint one paradigm superior to the other.

We also observed increasing di�culty in both groups instead of a learning e↵ect over the course of the tasks.

This does provide some formalized evidence in support of the common conception that the colloquial phrase

“parallel programming is hard” has at least some objective truth since even the final, but still rudimentary,

task of o✏oad computing (adding two vectors) was only fully successfully completed by 21 of the 91 students

(23.0%). The study results indicate that our teaching approach in successive task design did not improve

performance in later tasks. In fact, the contrary was true and the students had worse performance on the

later tasks, indicating that they were not e↵ectively learning the basics of the o✏oading technique. We

found this particularly surprising for Task 5 in the Thrust group which only required the proper #include

statements and a simple assignment in the form devX = hostX; devY = hostY; to copy data from the

device memory to host memory. By this point in the task progression we had expected some learning e↵ect

to lower task times, especially since the later tasks had the correct code from previous tasks sca↵olded in,

which provided clues for correct syntax. The final task had the lowest number of successful outcomes (20%

for CUDA and 25% for Thrust) and the highest number of give ups and time outs. Although both groups

performed equally poorly on this final task, the results may not be comparable given the comparatively low

success rate.

Regarding programmer experience, we observed no significant di↵erence in performance on the tasks by

the groups based on any experience metric we tracked, including year in school or years of programming

experience. This suggests that experience with a new advanced technique may not be as fine-grained at

the student level compared to that between students and experienced professionals. Since none of the

participants reported any previous CUDA experience, they may have all e↵ectively been starting from the
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same knowledge base with regard to learning this new technique. Student comments regarding the di�culty

of learning new GPU syntax were consistent with this explanation.

5.4.6 External Validity

One of the surprise aspects of this study data that may be more generalizable is the di�culties experienced

by student programmers in using external libraries and dependencies. In an e↵ort to understand why the

Thrust group performed worse, we manually inspected the code results and determined that a common issue

students had was related to library dependencies and usage. Students frequently improperly used either

i) a #include statement for the correct Thrust library, ii) the thrust namespace, iii) the scope resolution

operator :: for a method or data type, or iv) the using namespace statement.

Although not an identical problem, our results are consistent with build and dependency errors documented

in professional software developers in industry. In a large scale 2014 study of 26.6 million build errors from

18,000 developers at Google [SSE+14], researchers found that 10% of the error types accounted for 90%

of the build failures and that the type of errors observed were most commonly dependency-related. An

important di↵erence with our study is that professional developers fixed the errors more quickly than the

student programmers, suggesting an impact of experience. In the Google study 75% of the build errors

were resolved within at most two builds for all of the 25 most common error kinds for both Java and

C++, while in our study, the mean number of failed compiles was 4.8. The cause of the di�culties with

issues of #include statements could relate to either C/C++ language design itself or in the instructional

methods used. It should be informative to educators in their teaching strategies that even students with

programming experience in advanced classes may need review or detailed instruction on these concepts since

even professional developers continue to err with them.

Another potential criticism of the study with respect to generalizability is that GPU-based parallel program-

ming is intended to be performed by experienced experts on medium and large scale development e↵orts,

not by university students on a trivial function to add two vectors. Although we acknowledge this potential

limitation in interpreting the results, we believe this type of research is important to improve and understand

both the educational process of students as well as for language design to ensure the successful development

of future programmers. Put another way, analyzing results in both professionals and students has value,

as these di↵erent kinds of demographics may provide di↵erent kinds of information to researchers. The

results we observed in this study may only apply to student learners using the limited instruction technique

described, but it also provides a basis for future research to understand the extent of the limitations.

5.5 Conclusion

This study provides evidence from a randomized controlled trial that computer science students learning

GPU programming for the first time performed worse using a higher level abstraction paradigm (Thrust)
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compared to a lower level paradigm (CUDA). The results also show that even the most simple version of a

fundamental task of parallel computing (o✏oading a basic vector addition computation to a coprocessor) is

challenging for students.

We examined 4 research questions which corresponded to 4 specific di↵erent abstractions in GPU program-

ming for i.) memory allocation, ii.) array iteration, iii.) memory copy to/from host/coprocessor and iv.)

an o✏oaded kernel routine. In the 5 tasks where abstractions were tested, we observed that the low-level

CUDA abstraction paradigm tested equal to or better than the high-level Thrust abstraction paradigm in

every case among student learners. While our results are not a comprehensive or conclusive determination of

superiority for either CUDA or Thrust, the fine-grained examination of these specific abstractions provides

interesting and potentially useful information for language designers and instructors.
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Chapter 6

Analysis of Compiler Errors Using

Token Signature Analysis

Decades of study [BDP+19] have shown that compiler error messages are considered di�cult to understand,

particularly for novices learning to program. The research has also suggested the message feedback is

extremely important to programmers, so there have been various approaches suggested to providing enhanced

messages. In this paper, we present a novel approach to identifying and enhancing error messages based on a

token signature technique. The token signature technique can provide additional contextual information for

certain types of errors based on patterns of tokens and missing tokens in a segment of code. We applied this

technique to a database containing 108,110 programs written in the Quorum programming language that

had at least one compiler error and found error patterns similar to those observed by other researchers. We

used the token pattern data to develop more targeted customized messages and a hint engine for the most

common errors patterns we observed.

6.1 Introduction

The format of this paper is inspired by the 2019 report from the working group on compiler error research

of the Innovation and Technology in Computer Science Education Conference (ITiCSE) [BDP+19]. The

ITiCSE paper presents a comprehensive synthesis of the body of knowledge on compiler error research,

including certain semi-standardized results reporting, well-defined nomenclature, a framework for analyzing

the technical challenges of e↵ective error messages, and guidelines for known approaches to providing e↵ective

compiler messages. We adhere to the general format and nomenclature of the ITiCSE paper in the reporting

of an analysis of our compiler error database.
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In this paper, we will present a summary and analysis of a code repository in which we have been accumulating

data for over three years from the Quorum programming language. Quorum is a evidence-based JVM-based

programming language designed for simplicity for novice users and motivated by the need for accessibility

to the blind and visually impaired community. Quorum is an open-source project with an extensive online

curriculum primarily funded for over five years by the National Science Foundation. The compiler is now in

its seventh generation with additional libraries and supporting software, like the recently introduced Quorum

Studio integrated development environment (IDE) added annually. The code repository has tracked user

submitted programs since the introduction of on online IDE and JavaScript cross compiler which allowed

Quorum to run through a browser on a website. An analysis of that database is presented here. Additionally

we will present and discuss, along the lines of the ITiCSE report, our work to develop a technique to

supplement compiler error message and editor hints for auto-completion or auto-correction which we call the

Token Signature Technique.

6.1.1 Motivation for Token Signature Technique

The token signature technique we developed is based on our previous work in token accuracy maps. [DSUP20,

Dal16, SS13] It is motivated by the need to provide additional information beyond an Adaptive LL*

parse [PF11] to detect potential root causes of errors. The essential concept of our token based analysis

approach involves running a segment of code through a lexical analyzer (“lexer”), created by the ANTLR

program (antlr.org), to generate a list of tokens which have a corresponding number for the type of token.

Using a token-by-token matching or alignment algorithm, we are able to make objective comparisons about

two di↵ering code samples or look for token patterns similar to historic error patterns.

In our earlier work, we applied the token approach to a full program and then generated an overall accuracy

score after applying a string alignment algorithm [NW70]. We also looked at a token specific score to

determine the accuracy rate of a particular token. This approach had limitations in a generalized application

for various reasons, including the variability of possible correct solutions for comparison as well as the

imperfect nature of applying a string alignment algorithm. A detailed analysis of localized token by token

responses in certain code segments, however, allowed us to observe patterns of behavior. In the particular

study of student participants in the randomized controlled trial on concurrency paradigms [DSUP20] we

could see that patterns of consistently missing tokens in a particular concurrency construct revealed that

the students lacked a key understanding of the paradigm in order to complete the task successfully. With

this insight, we developed the token signature technique as a mechanism to target localized code segments

on a systematic basis.
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6.2 Definitions

Throughout this chapter and the next we refer to a number of terms which can be similar and so to avoid

confusion, we provide the following definitions to provide clarity and specificity to the meaning we intend:

• Error Code - The numeric code assigned by the Quorum compiler to categorize di↵erent types of

compiler errors based on their origination. The numbers vary from 0 up to 46, identified in the list in

Table 6.3

• Lexer - The software program that performs the lexical analysis and takes a stream of characters from

a program and converts it to a set of tokens. We used the same ANLTR lexical generator [PF11] used

by Quorum.

• Lexical Analysis - The process of breaking a stream of characters into tokens usually performed by

a lexer or tokenizer program.

• Token - A sequence of characters that matches a pattern recognized by a language. Also in our case

a class containing all the information about a token accessible to the parser at the time of a compiler

error. A list of Quorum tokens is provided in Figure 6.2.

• Token Data - The user entered information for a particular type, for example, an token representing

an integer literal has a user entered value for the token.

• Token Map - The Token Signature mapped to the Token Symbols and Names.

• Token Name - A descriptive name we gave to the token, for example, INTEGER KEYWORD.

• Token Type - A numeric code assigned by the Quorum lexer to a particular token, for example, the

Token Type associated with an INTEGER KEYWORD is 37,

• Token Signature - A string of Token Types separated by spaces for each token lexed from a particular

segment of code (a line in this paper).

• Token Symbol - The string of characters recognized as a token by the language, for example integer

is the symbol in Quorum to mean an integer keyword.

6.3 Methods

In order to apply the token signature technique to a body of actual compiler errors, we utilized a database of

code submissions from the Quorum Programming Language site (quorumlanguage.com). The Quorum site

has an online interactive development environment (IDE) shown in Figure 6.1 which allows a user to type

code in an editor and submit it for compilation and execution. When code is submitted, our system logs

the submission and certain meta data in a private database. The system went live in June 2017 and as of
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Figure 6.1: Quorum Online Interactive Development Environment (IDE).

Summer 2019, when the data for this paper was pulled, contained 294,631 usable code samples, 108,110 of

which contain at least one compiler error.

The Quorum site contains extensive interactive curriculum, tutorials and activities, most of which have IDEs

built in to the pages. Since we are able to track which IDE initiated the compiler request, we know which

page the user was on when they made their submission. The primary sources of users data, sorted by number

of error files (see Table 6.1) are:

Data Source Errors Pct.

Hour of Code Astronomy 47,124 43.6%

Quorum Lessons 23,452 21.7%

Quorum Tutorials 22,835 21.1%

Girls Who Code 8,025 7.4%

Skynet Junior Scholars / IDATA 4,333 4.0%

General 2,341 2.2%

TOTAL 108,110 100.0%

Table 6.1: Sources of Files In Quorum Database
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1. Hour of Code Astronomy Activity - A 20 segment activity designed for first time programmers

for Code.org’s annual Hour of Code activity.

(https://quorumlanguage.com/hourofcode/astro1.html)

2. Quorum Lessons - Activity labs designed for teachers to use in the classroom, accessible to blind

and visually impaired students.

(https://quorumlanguage.com/learn.html)

3. Quorum Tutorials - A multi-track curriculum designed for teachers to use in the classroom, accessible

to blind and visually impaired students.

(https://quorumlanguage.com/reference.html)

4. Girls Who Code IDEs placed in activities.

(https://girlswhocode.com)

5. Skynet Junior Scholars IDEs placed in activities.

(https://skynetjuniorscholars.org)

6. General (Home page and Other)

(https://quorumlanguage.com)

6.3.1 Compiler Output Modification

In order to analyze a data set with over 108,110 compilation errors we had to automate certain aspects

of the process. The first step was to modify the error handling routine within the Quorum compiler to

prove a verbose output option with more detailed information about the errors it finds. The detailed error

output comes in JavaScript Object Notation (JSON) [jso20] format, which can be written to an external file.

Sample JSON output from a compilation is shown in Figure 6.2. The JSON output file provides detailed

information in a parseable format about the exact error, the error messages and the locality of the error, all

of which the compiler had available to it at the time the error was detected. After we had this capability,

we wrote a processing program which compiled all of the 294,631 source files and wrote JSON output files

for each of the 108,110 files that had compiler errors. We created a post processing program that parsed the

JSON output files to create, group and sort a master list of errors by type for the whole collection of error

files. The JSON errors used for this dissertation were based on Version 7.0 of the Quorum Compiler. We

stored this information in a database along with i.) the actual line of code which caused the first error in

the file, ii.) the token signature which we calculated from the error line, iii.) the error type, iv.) the error

description and v.) the error message displayed to the user. We deliberately chose to focus on the first error

for this analysis and for the hint engine, which the literature [BMT+18, BM84] indicates is often better for

the novice programmer in order to reduce confusion.
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{ 
  "Compiler": { 
    "Name": "Quorum", 
    "Version": "Quorum 7.0" 
  }, 
  "Intro": "This program did not compile. I have compiled a list of errors for you 
below:", 
  "Errors": [ 
    { 
      "Display": "/home/daleiden/compile/code_files_errors/115.quorum, Line 1, Column 
0: I noticed that the variable a has the declared type of integer, but the right hand 
side of the statement was blank. For example, you might try integer a = 0", 
      "Type": 45, 
      "Type Display": "For an assignment of a primitive with a declared type, a value 
is required", 
      "Message": "I noticed that the variable a has the declared type of integer, but 
the right hand side of the statement was blank. For example, you might try integer a = 
0", 
      "Line": 1, 
      "Column": 0, 
      "Key": "/home/daleiden/compile/code_files_errors/115.quorum" 
    }, 
    { 
      "Display": "/home/daleiden/compile/code_files_errors/115.quorum, Line 2, Column 
0: Cannot assign a value of type 'number' to a variable of type 'integer'.", 
      "Type": 12, 
      "Type Display": "Invalid operator", 
      "Message": "Cannot assign a value of type 'number' to a variable of type 
'integer'.", 
      "Line": 2, 
      "Column": 0, 
      "Key": "/home/daleiden/compile/code_files_errors/115.quorum" 
    } 
  ] 
} 

Figure 6.2: Sample JSON Output from Quorum Compiler.

6.3.2 Token Signature Generation

The token signature is a set of numbers corresponding to tokens in a particular line of code based on the

token type’s unique assigned number. In order to generate a token signature for the line of code we take a

file with a code sample and a line number and run it through a tokenizer program which extracts the line

of code and runs it through a lexer which was generated by the ANTLR program [PF11]. The lexer then

breaks down the line of code into a series of tokens. The token types are looked up in a table and assigned

a number to represent their type. The tokenizer program then outputs a list of tokens including the token

number, name, symbol and user input. The token signature is constructed using the list of token numbers

separated by a single space. Figure 6.3 shows an example of a line containing an error which was run through

the tokenizer.

For example, this line of code written in the Quorum programming language:

integer answer = 42
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Figure 6.3: Example Token Signature.

has four tokens: i.) an integer keyword (“integer”), ii.) a variable name or identifier (“answer”), iii.) an

assignment operator (“=”) and iv.) an integer literal (“42”). Looking up each of these token types in the

table of tokens for Quorum (shown in Table 6.2), we get the token numbers 35 for the integer keyword, 65

for the identifier, 44 for the equal sign and 63 for the integer literal. The token signature for this line of code

is therefore ‘‘35 65 44 63’’, depicted as follows:

35 65 44 63

integer keyword id = integer literal

6.3.3 Signature Comparison

Using this token signature, we can now make comparisons of lines with errors to lines with correct syntax

or observed patterns of errors to suggest hints from a database or rules engine. Using the example shown in

Figure 6.3, we can see that there is a mismatch between the declared type of the variable (“integer”) and the

actual type of the literal (“number”). The error message generated by the compiler in this particular case

is: (“Cannot assign a value of type ’number’ to a variable of type ‘integer’”). Our intent is

to provide additional supplemental hints or suggestions based on observed patterns of common mistakes.

We can see that the token signature:

35 65 44 64

integer keyword id = decimal literal
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Token Type Token Name Token Symbol

1 OUTPUT output

2 ON on

3 CREATE create

4 CONSTANT constant

5 ELSE IF elseif

6 ME me

7 UNTIL until

8 PUBLIC public

9 PRIVATE private

10 ALERT alert

11 DETECT detect

12 ALWAYS always

13 CHECK check

14 PARENT parent

15 BLUEPRINT blueprint

16 NATIVE system

17 INHERITS is

18 CAST cast

19 INPUT input

20 SAY say

21 NOW now

22 WHILE while

23 PACKAGE NAME package

24 TIMES times

25 REPEAT repeat

26 ELSE else

27 RETURNS returns

28 RETURN return

29 AND and

30 OR or

31 NULL undefined

32 STATIC static

33 ACTION action

34 COLON :

35 INTEGER KEYWORD integer

36 NUMBER KEYWORD number

37 TEXT KEYWORD text

38 BOOLEAN KEYWORD boolean

39 USE use

40 NOT not

41 NOTEQUALS not=

42 PERIOD .

43 COMMA ,

44 EQUALITY =

45 GREATER >

46 GREATER EQUAL >=

47 LESS <

48 LESS EQUAL <=

49 PLUS +

50 MINUS -

51 MULTIPLY *

52 DIVIDE /

53 MODULO mod

54 LEFT SQR BRACE [

55 RIGHT SQR BRACE ]

56 LEFT PAREN (

57 RIGHT PAREN )

58 DOUBLE QUOTE ”

59 IF if

60 END end

61 CLASS class

62 BOOLEAN LITERAL user defined

63 INTEGER LITERAL user defined

64 DECIMAL LITERAL user defined

65 ID user defined

66 STRING user defined

67 NEWLINE

68 WS

69 COMMENTS

Table 6.2: Quorum Language Tokens Types and Numbers.
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is incorrect, but we don’t know if the programmer meant:

a.)

35 65 44 63

integer keyword id = integer literal

or b.)

36 65 44 64

number keyword id = decimal literal

or something else entirely. Since we know definitively that the first and fourth tokens need to be consistent

in any line consisting of keyword id = literal, we can create a rule to suggest two correct lines of code

based on 3 of the 4 tokens matching a known correct pattern. Using the compiler error manager’s knowledge

of the users token symbols, we could generate a friendly error and suggestion such as:

On line 1 of your program, you attempted to assign a value (10.4) with a ‘‘number’’

type to a variable (a) with an ‘‘integer’’ type, which is not allowed.

You might have been trying to do one of the following:

number a = 10.4

integer a = 10

Of course, our rule-based suggestions are not guaranteed to match the user’s intent, but they could guide the

programmer to a quicker resolution or they could be used in an auto-correcting mechanism in an interactive

code editing environment. Relating to the ITiCSE working group paper again [BDP+19], this type of

messaging targets the deliver of feedback at the time and place of the error in the context where learning

seems most likely to occur.

6.3.4 Analytics Dashboard

In order to work more easily with the database system and the assorted computation and presentation of

the token signatures, we built a display dashboard to view, sort, filter and navigate the data for qualitative

inspection. The dashboard is shown in Figure 6.4. The dashboard provides detailed information captured

at the time the compile event was submitted, such as the user name (if the user is logged in on the Quorum

site), the name of the IDE on the site, the web page where the user request originated, the version of the

compiler used, the timestamp of the event and the error type and number of compiler errors. The Dataset

section provides filtering mechanisms and the number of items in the filtered set. Additionally the users

code and the compiler error message they were given are on the left along with the verbose error message we

generate in JSON in the recompilation. The First Error section displays the error message, error line and

the calculated token signature and table.
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Figure 6.4: Analytics Dashboard.

6.4 Results

As Becker et al. [BMT+18] observed, it is common for studies on compiler errors to include a presentation

of the “most common” errors based on the logical assumption that helping students with the most common

errors is the most productive. We adhere to the common standard here with a presentation of error fre-

quencies in the Quorum programming language database. The results of the first phase of processing our

database, which consisted of sorting and counting the errors by compiler error code, are shown in Table 6.3

and Figure 6.5. As a percentage of the total errors, the top single error, PARSER NO ALTERNATIVE accounted

for 31.7% of all errors. The top 5, 10 and 15 error types combined comprised 76.7%, 97.7% and 99.9% of all

errors.

The number of errors by compiler error code for All Errors, not just the First Error, displayed a similar

graphical pattern as shown in Table 6.4 and Figure 6.6, but the ranking of the error codes shows a di↵erent
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Error
Code

Error Code Description N % Cum. %

43 PARSER NO VIABLE ALTERNATIVE 34,316 31.7% 31.7%
35 OTHER 20,111 18.6% 50.3%
0 MISSING VARIABLE 12,348 11.4% 61.8%
11 MISSING USE 8,218 7.6% 69.4%
41 INPUT MISMATCH 7,882 7.3% 76.7%
42 LEXER NO VIABLE ALTERNATIVE 7,730 7.2% 83.8%
14 DUPLICATE 6,167 5.7% 89.5%
3 MISSING METHOD 4,003 3.7% 93.2%
12 INVALID OPERATOR 3,326 3.1% 96.3%
5 INCOMPATIBLE TYPES 1,520 1.4% 97.7%
37 VARIABLE INFERENCE 735 0.7% 98.4%
7 MISSING CLASS 658 0.6% 99.0%
45 NO RIGHT HAND SIDE ON NORMAL ASSIGNMENT 520 0.5% 99.5%
4 MISSING MAIN 326 0.3% 99.8%
2 MISSING RETURN 102 0.1% 99.9%
24 IF INVALID EXPRSSION 61 0.1% 99.9%
33 REPEAT NON BOOLEAN 24 0.0% 99.9%
32 REPEAT TIMES NON INTEGER 17 0.0% 100.0%
13 UNREACHABLE 15 0.0% 100.0%
25 MISMATCHED TEMPLATES 8 0.0% 100.0%
26 INSTANTIATE ABSTRACT 8 0.0% 100.0%
44 PRIMITIVE INVALID ACTION CALL 7 0.0% 100.0%
46 ACCESS ERROR 6 0.0% 100.0%
34 CONSTANT REASSIGNMENT 2 0.0% 100.0%
31 METHOD DUPLICATE 0 0.0% 100.0%
10 MISSING PARENT 0 0.0% 100.0%

TOTAL 108,110 100%

Table 6.3: Errors By Compiler Error Code - First Error Only

Error
Code

Error Code Description N % Cum. %

42 LEXER NO VIABLE ALTERNATIVE 175,899 39.7% 39.7%
35 OTHER 65,883 14.9% 54.5%
43 PARSER NO VIABLE ALTERNATIVE 60,347 13.6% 68.2%
14 DUPLICATE 53,628 12.1% 80.3%
0 MISSING VARIABLE 20,185 4.6% 84.8%
41 INPUT MISMATCH 17,405 3.9% 88.7%
5 INCOMPATIBLE TYPES 14,449 3.3% 92.0%
11 MISSING USE 11,365 2.6% 94.6%
12 INVALID OPERATOR 8,005 1.8% 96.4%
3 MISSING METHOD 7,094 1.6% 98.0%
37 VARIABLE INFERENCE 3,055 0.7% 98.7%
7 MISSING CLASS 2,642 0.6% 99.3%
24 IF INVALID EXPRSSION 1,680 0.4% 99.6%
45 NO RIGHT HAND SIDE ON NORMAL ASSIGNMENT 690 0.2% 99.8%
4 MISSING MAIN 496 0.1% 99.9%
2 MISSING RETURN 197 0.0% 99.9%
33 REPEAT NON BOOLEAN 71 0.0% 100.0%
25 MISMATCHED TEMPLATES 45 0.0% 100.0%
13 UNREACHABLE 41 0.0% 100.0%
31 METHOD DUPLICATE 29 0.0% 100.0%
32 REPEAT TIMES NON INTEGER 21 0.0% 100.0%
46 ACCESS ERROR 19 0.0% 100.0%
44 PRIMITIVE INVALID ACTION CALL 9 0.0% 100.0%
26 INSTANTIATE ABSTRACT 8 0.0% 100.0%
34 CONSTANT REASSIGNMENT 2 0.0% 100.0%
10 MISSING PARENT 1 0.0% 100.0%

TOTAL 443,226 100%

Table 6.4: Errors By Compiler Error Code - All Errors
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Figure 6.5: Total Errors by Compiler Error Code - First Error.

ordering for each group. (Figure 6.7). The top ten errors accounted for 98.0% of all errors in this dataset

and the top error code accounted for 39.7% of the total errors. Although the top ten error codes were the

same ten error codes in both the First Error and All Errors groups, the ranked ordering of the error codes

were di↵erent, as shown in Table 6.5. The biggest movement up the ranking from the First Error data set to

the All Errors data set was LEXER NO VIABLE ALTERNATIVE, which increased by 32.6% of errors. The biggest

movements down in ranking was PARSER NO VIABLE ALTERNATIVE which decreased by 18.1% of errors.

6.4.1 Token Signature Frequencies

We grouped and counted the signatures and then sorted them in descending order. The top 20 most common

signatures overall comprised 28.8% of the total errors. The rank, error code, token signature, token map,
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Figure 6.6: Total Errors by Compiler Error Code - All Errors.

frequency (N) and percentage of all errors are depicted in Table 6.6 for the 25 most common signatures

causing compiler errors.

We also calculated the frequency of the top ten errors for each of the top six error types as listed in

Figure 6.3, which are presented in Figure 6.10. The top 5 errors for these top 5 error types (a total of 25

token signatures) represent 25.3% of the total 108,110 errors in the database. The chart demonstrates that

the error concentration of the top errors in each category is high.

6.5 Discussion

Overall the error frequency data we observed in the Quorum data repository analysis displayed remarkable

similarity to published results for the top ten errors from six other studies cited by Becker et al. [Bec16],
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Error
Code

Error Code Description
Rank of
First
Error

Rank of
All

Errors

Rank
Change

Pct.
Change

43 PARSER NO VIABLE ALTERNATIVE 1 3 -2 -18.1%
35 OTHER 2 2 0 -3.7%
0 MISSING VARIABLE 3 5 -2 -6.9%
11 MISSING USE 4 8 -4 -5.0%
41 INPUT MISMATCH 5 6 -1 -3.4%
42 LEXER NO VIABLE ALTERNATIVE 6 1 5 32.5%
14 DUPLICATE 7 4 3 6.4%
3 MISSING METHOD 8 10 -2 -2.1%
12 INVALID OPERATOR 9 9 0 -1.3%
5 INCOMPATIBLE TYPES 10 7 3 1.9%
37 VARIABLE INFERENCE 11 11 0 0.0%
7 MISSING CLASS 12 12 0 0.0%
45 NO RIGHT HAND SIDE ON NORMAL ASSIGNMENT 13 14 -1 -0.3%
4 MISSING MAIN 14 15 -1 -0.2%
2 MISSING RETURN 15 16 -1 0.0%
24 IF INVALID EXPRSSION 16 13 3 0.3%
33 REPEAT NON BOOLEAN 17 17 0 0.0%
32 REPEAT TIMES NON INTEGER 18 21 -3 0.0%
13 UNREACHABLE 19 19 0 0.0%
25 MISMATCHED TEMPLATES 20 18 2 0.0%

Table 6.5: Comparison of Frequency by Error Codes - First Error vs. All Errors

Rank
Error
Code

Token Signature Token Map N %

1 0 1 65 output ID 5,796 5.4%

2 43 65 ID 5,287 4.9%

3 11 65 65 ID ID 5,122 4.7%

4 43 NULL NULL 4,305 4.0%

5 43 65 66 ID STRING 2,920 2.7%

6 35 66 STRING 2,459 2.3%

7 12 65 65 44 63 ID ID = INTEGER LITERAL 2,192 2.0%

8 43 39 65 42 65 42 65 use ID . ID . ID 2,145 2.0%

9 43 60 end 1,998 1.8%

10 43 35 65 44 63 integer ID = INTEGER LITERAL 1,785 1.7%

11 3 65 56 57 ID ( ) 1,627 1.5%

12 0 59 65 if ID 1,336 1.2%

13 41 1 66 output STRING 1,238 1.1%

14 0 35 65 44 65 52 65 integer ID = ID / ID 1,152 1.1%

15 14 37 65 44 66 text ID = STRING 822 0.8%

16 43 1 output 792 0.7%

17 14 36 65 44 18 56 36 43 66 57 number ID = cast ( number , STRING ) 785 0.7%

18 41 65 65 65 ID ID ID 736 0.7%

19 12 65 44 65 49 64 ID = ID + DECIMAL LITERAL 625 0.6%

20 43 1 65 65 output ID ID 599 0.6%

21 41 33 65 action ID 588 0.5%

22 0 36 65 44 18 56 36 43 65 57 number ID = cast ( number , ID ) 584 0.5%

23 0 65 34 65 56 66 57 ID : ID ( STRING ) 571 0.5%

24 43 63 INTEGER LITERAL 539 0.5%

25 11 65 65 44 66 ID ID = STRING 503 0.5%

Table 6.6: Top 25 Most Common Token Signatures Causing Errors Overall.
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Figure 6.7: Error Frequency By Group - First Error vs. All Errors

Error 43 Error 35 Error 0 Error 11 Error 41 Error 42
Rank N % N % N % N % N % N %

1 4,854 14.1% 1,296 6.4% 2,877 23.3% 2,328 28.3% 511 6.5% 1,726 22.3%
2 2,891 8.4% 647 3.2% 1,287 10.4% 1,837 22.4% 476 6.0% 944 12.2%
3 1,669 4.8% 485 2.4% 1,039 8.4% 750 9.1% 450 5.7% 347 4.5%
4 762 2.2% 459 2.3% 417 3.4% 260 3.2% 401 5.1% 324 4.2%
5 519 1.5% 361 1.8% 366 3.0% 244 3.0% 333 4.2% 270 3.5%
6 463 1.3% 331 1.6% 350 2.8% 201 2.4% 298 3.8% 165 2.1%
7 462 1.3% 324 1.6% 289 2.3% 183 2.2% 112 1.4% 164 2.1%
8 440 1.3% 294 1.5% 232 1.9% 180 2.2% 111 1.4% 126 1.6%
9 372 1.1% 279 1.4% 192 1.6% 154 1.9% 73 0.9% 119 1.5%
10 299 0.9% 248 1.2% 181 1.5% 112 1.4% 70 0.9% 108 1.4%

Table 6.7: Frequency Chart of Top 10 Token Signatures of Top 6 Error Codes.
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including [Bec15, BKMU14, JCC05, TRJ11, DR10, Jad05]. It is particularly interesting to us that this

similarity exists with our data since the other studies were all based on the Java programming language and

ours was based on Quorum.

We also note that our observations of the di↵erences between the first error dataset and all errors dataset

were also consistent with data from Becker et al. [BMT+18]. In their analysis of 21.5 million error messages

in the Blackbox data, they found 28.5% of the total errors were first error messages, which is substantially

similar to the 24.5% we observed in our much smaller sample. Regarding the specific major changes between

the groups, we were not surprised that the top error type for all errors was a LEXER NO VIABLE ALTERNATIVE

error given the nature of cascading errors where this type of error commonly occur after a first error in a

cascade.

Although we cannot directly compare the frequencies of token signatures to the frequency of compiler error

codes, we found it interesting that the logarithmic decline in frequencies generally resembled the distributions

of the compiler error codes. The fact that the concentration of errors is consistent lends some validity to

the notion that the underlying causes of the errors, reflecting the novice programmers general understanding

level, is consistent across various measurement techniques and types of errors.

6.5.1 Zipf’s Law
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Figure 6.8: Frequency of Actual Token Signatures vs. Zipf’s Law Prediction
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The frequency distributions we observe in the various error code and token signature lists appeared visually

to follow the predicted frequency for Zipf’s Law (also called Pareto distributions or Power laws) [New05].

These distribution essentially predict that the probability of encountering the rth most common word is

given roughly by P(r) = 0.1/r using the calculation at Wolfram Mathworld [Wei20]. Zipf’s prediction is

interesting because it was originally applied to linguistic study and word frequency and recently to Java

and Python computer programming languages as well. [Pri15] We applied the test to the frequency data for

the top 25 token signatures overall and can see a close similarity to the Zipf Law prediction as shown in

Figure 6.8

6.5.2 Exponential Decay Model

To quantify the rate of fall o↵ in the frequency of errors at a given rank, I fit an exponential decay model to

the data to satisfy the formula:

E(y) = ↵e�x + ✓

The non-linear regression model indicated values of ↵ = 0.0629 (t=29.95, p < 0.001), � = �0.1677 (t=-13.22,

p < 0.001) and ✓ = 0.0036 (t=3.573, p < 0.01) with a residual standard error of 0.0021 with 22 degrees of

freedom. The fitted curve is shown in Figure 6.9.

Figure 6.9: Exponential Decay Model

6.5.3 Frequency Distributions of Top Error Codes

The frequency distributions of the top token signatures for the six largest compiler error codes shown in

Table 6.7 is inspired by a comparison done by Becker [Bec15] of the top 10 Java errors from six di↵erent studies
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Figure 6.10: Frequency Graph of Top 10 Token Signatures of Top 6 Error Codes

spanning several years, which the ITiCSE working group noted had “very strong similarities” [BDP+19]

between the distributions. Our Quorum data for the frequency distributions of token signatures is both i.)

similar to Becker’s observation of Java errors in di↵erent studies and ii.) similar across di↵erent compiler

error codes within Quorum. The implication suggested by the ITiCSE group is that this similar pattern

“(beyond an interesting and possibly useful way to compare languages) is an measuring what languages give

more distinctive programming error messages.” One of the goals of the token signature feedback system is to

identify the patterns within the most concentrated errors to provide more granular distinctions of the root

causes of those errors as the group suggests.
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Chapter 7

Rules

In this chapter, we will: i.) describe the technical implementation and methodology behind the rules engine,

ii.) give examples of rules based on commonly occurring token signature patterns we observed in the Quorum

database and iii.) evaluate the Token Signature Technique as a compiler error enhancement technique. The

purpose is to give the reader a sense of the types of errors that occurred most commonly and to show how

the technique could be used in specific cases to identify and categorize root patterns and suggest corrections

or hints in those situations.

7.1 Rules Engine Methodology

Token Signatures are not like compiler errors, they are single strings embedded within a user’s mistake. We

briefly describe here how these strings, generated from the locality garnered by Adaptive LL * [PF11] are

generated. The technical implementation of the rules engine for the Token Signature Technique occurs at

a low level in the architectural model presented in the ITiCSE paper [BDP+19]. After the lexical analysis

occurs in the first compiler pass, the token information is retained into the next phase as the compiler

begins to parse the tokens into a grammar it understands. If the compiler fails to find a valid parse tree, it

immediately triggers an error manager and passes the error manager all the information that the parser has

about the state of the parse as well as the complete lexical analysis. It is at this point in the first error in the

second compiler pass that the Token Signature Technique resides. As described in Section 6.3.2, the compiler

error manager can generate a token signature for analysis with just the information from the lexical stream

and the locality information from where the parser found a problem. This token signature, the locality and

error type information and the full token stream from the lexer is passed to the rules engine for analysis.
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7.1.1 Solution for the “String” Example

By way of example in another context, the ITiCSE paper presents a common situation, at least based on

the Quorum data, as a motivating example giving a line of Java code containing an error:

public static void main(string[] args) {

with an error message stating “cannot find symbol” with the point of error identified at the letter s in

the word string on the line we extracted above. We agree that the compiler generated message in this case

does not adequately reflect the user error.

The approach that the Token Signature method would take would be to break down the tokens in the line

using token numbers (which we will assign sequentially for illustration) to generate a Token Signature:

User Token Name Token Num

public PUBLIC 8

static STATIC 32

void VOID 70*

main ID 65

( LPAREN 56

string ID 65

[ LEFT SQR BRACE 54

] RIGHT SQR BRACE 55

args ID 66

) RPAREN 57

* Note that the void keyword does not exist in Quorum

The token signature would be “8 32 70 65 56 65 54 55 66 57” and the compiler would pass the locality

to the rules engine so it would know that the error occurred at token number 6 which is an ID. The rules

engine would recognize that the signature matches a correct signature but that ID at token number 6 has a

problem. The problem could be one of several things, including an undeclared ID, misspelled ID or a case

error to a known keyword or library type. A capitalization and spell check would be among the first tests

since this type of error is very common among novices. Knowing that capitalizing the first letter makes the

line valid, the error message could suggest the exact solution in this case. We note that this type of error

represents a significant portion of the third highest overall error and a spell/capitalization check is the first

rule.

7.2 Exposition of Errors and Rules

Having completed this analysis, we can focus the e↵orts of the rules and hints construction on the top errors

in each category to try to generate better messages and potential solutions. Remembering that the key

90



priority with this technique is not to try to definitively resolve the source of every possible problem, but

rather to provide potentially useful feedback to a novice programmer at the point of error with the ultimate

goal of improving learning and productivity.

7.2.1 Signature 1: “1 65”

Token Signature 1 65

Token Map output ID

N Overall 5,796

Rank Overall 1

% of Overall 5.4%

Error Code 0

Error Description MISSING VARIABLE

N in Error Code 2,877

Rank In Error Code 1

% of Error Code 23.3%

Error Code 42

Error Description LEXER NO VIABLE ALTERNATIVE

N in Error Code 1,726

Rank In Error Code 1

% of Error Code 22.3%

Error Code 43

Error Description PARSER NO VIABLE ALTERNATIVE

N in Error Code 463

Rank In Error Code 7

% of Error Code 1.4%

Observations:

The most common occurrences of this error are when the user either i.) has not previously declared the ID

or ii.) misspelled the ID they intended to use or iii.) had a capitalization error on the ID.

Another common cause of this error is when the ID is intended to be a STRING LITERAL, but the pro-

grammer forgot to enclose the word in quotation marks. Since Quorum does not recognize a single quotation

mark as a special token, it was common for users to attempt to form a string using them. A simple program

like output ‘hello world’ would give a token signature of 1 65 in Quorum and cause this error.

Rules / Suggestions:

• Check the token stream in previous line to see if a spell check or capitalization check could suggest an

ID.
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• Suggest to the user that they may need to declare and assign a value to the ID before attempting to

output a value if there is no identifiable ID previously.

• Suggest that the ID may have been intended to be enclosed in quotation marks if there is no identifiable

ID previously.

• Suggest that the ID needs to be enclosed in double quotation marks instead of single quotation marks

if the ID token contains single quotation marks.

7.2.2 Signature 2: “65”

Token Signature 65

Token Map ID

N Overall 5,287

Rank Overall 2

% of Overall 4.9%

Error Code 43

Error Description PARSER NO VIABLE ALTERNATIVE

N in Error Code 4,854

Rank In Error Code 1

% of Error Code 14.7%

Error Code 11

Error Description MISSING USE

N in Error Code 183

Rank In Error Code 7

% of Error Code 2.2%

Error Code 42

Error Description LEXER NO VIABLE ALTERNATIVE

N in Error Code 164

Rank In Error Code 7

% of Error Code 2.1%

Observations:

The word output is commonly on a line by itself or combined with an identifier, for example outputa or

outputseconds.

Another common mistake is to incorrectly call a method of a library, for example PlayUntilDone without

using the correct Quorum syntax ID:PlayUntilDone.

Rules / Suggestions:
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• Check if the ID is output (or a common misspelling of it) and then give them programmer a hint with

other declared variables in the scope or give an example of the format output STRING LITERAL.

• Check if the ID contains the word output and if so, cut the token into two words as a hint.

• Check if the ID was a previously declared variable and suggest output + the ID.

• Check for a use statement earlier in the token stream and then search if the ID matches (or is a close

misspelling of) a method of the library class, then hint for the correct usage.

7.2.3 Signature 3: “65 65”

Token Signature 65 65

Token Map ID ID

N Overall 5,122

Rank Overall 3

% of Overall 4.7%

Error Code 11

Error Description MISSING USE

N in Error Code 2,328

Rank In Error Code 1

% of Error Code 28.3%

Error Code 14

Error Description DUPLICATE

N in Error Code 1,697

Rank In Error Code 1

% of Error Code 27.5%

Error Code 42

Error Description LEXER NO VIABLE ALTERNATIVE

N in Error Code 944

Rank In Error Code 2

% of Error Code 12.2%

Observations:

These signatures contain many of the output errors already described, especially with mis-spellings and

capitalization errors. For example, the line: Output ID will generate an error code 14 (DUPLICATE)

message (“Variable ID is already defined”) for a previous and correctly declared ID because the compiler

interprets Output as another type and the line as an attempt to declare a duplicate instance of the non-

existent Output class instead of a likely intent by the user to use token string 1 65 : output ID.
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The same code with the same signature can also generate di↵erent error codes and messages depending on

previous lines of code. For example Output ID will generate an error code 11 (MISSING USE) message (“I

could not locate a type named ID. Did you forget a use statement?”) if ID has not been declared or a 14

(DUPLICATE) message (“Variable ID is already defined”) if the ID has been previously declared. Either

way though, token signature analysis can help get to the root cause of the actual error in both of these cases

(incorrect capitalization), when neither other message actually correctly identifies the problem.

A related but separate common situation is the attempted declaration of a Library call, for example Drawable

bunny with similar capitalization or mis-spellings of the first ID.

Rules / Suggestions:

• For errors of type 14 (DUPLICATE) check for a misspelling

• Check if the first ID is a Library method that has a use statement already declared.

• Check for a missing use statement for a known

7.2.4 Signature 4: NULL

Token Signature NULL

Token Map NULL

N Overall 4,305

Rank Overall 4

% of Overall 4.0%

Error Code 43

Error Description PARSER NO VIABLE ALTERNATIVE

N in Error Code 2,457

Rank In Error Code 3

% of Error Code 7.5%

Error Code 35

Error Description OTHER

N in Error Code 1,259

Rank In Error Code 2

% of Error Code 6.3%

Error Code 41

Error Description INPUT MISMATCH

N in Error Code 511

Rank In Error Code 1

% of Error Code 6.5%
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Observations:

An NULL line registering an error was most commonly caused in this dataset by a programmer typing an

incomplete line of code followed by blank line which the parser did not know how to interpret. Over 1,400

of these cases are 2 line programs with a blank second line.

A missing end statement with a blank last line is the primary cause of the 511 error code 41 errors. In these

cases it is di�cult to determine where the end belongs if the program has nested statement.

Rules / Suggestions:

• Pull the previous, non-empty line to determine a possible error or missing next token causing the

incomplete parse.

• For missing end statements, a hint suggesting specific lines of code that might be missing ends, such

as lines containing the tokens: if, repeat, or action.

7.2.5 Signature 5: ”65 66”

Token Signature 65 66

Token Map ID STRING

N Overall 2,920

Rank Overall 5

% of Overall 2.7%

Error Code 43

Error Description PARSER NO VIABLE ALTERNATIVE

N in Error Code 2,891

Rank In Error Code 2

% of Error Code 8.8%

Error Code 42

Error Description LEXER NO VIABLE ALTERNATIVE

N in Error Code 15

Rank In Error Code 52

% of Error Code 0.2%

Error Code 35

Error Description OTHER

N in Error Code 9

Rank In Error Code 314

% of Error Code 0.0%
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Observations:

1,741 (59.6%) of these signatures were the results of mis-spellings or incorrect capitalization of the keyword

output and another 449 (15.4%) incorrectly categorized the word Say, so almost three quarters of these

errors could be fixed with a capitalization / spell check rule on the first token. Other common errors

included programmers using the word print (2.5%) or input (2.8%) with a string.

Rules / Suggestions:

• Capitalization and spell check of the first token.

7.2.6 Signature 6: “66”

Token Signature 66

Token Map STRING

N Overall 2,459

Rank Overall 6

% of Overall 2.3%

Error Code 43

Error Description PARSER NO VIABLE ALTERNATIVE

N in Error Code 1,669

Rank In Error Code 4

% of Error Code 5.1%

Error Code 41

Error Description INPUT MISMATCH

N in Error Code 450

Rank In Error Code 3

% of Error Code 5.7%

Error Code 35

Error Description OTHER

N in Error Code 324

Rank In Error Code 8

% of Error Code 1.6%

Observations:

A manual review of samples indicates that in many instances, the programmer appears to have intended the

string to be output by the computer, likely as an output or a say statement, but it is di�cult to know for

certain. Occasionally program control flow words like else and end where put in quotation marks for no

apparent reason. At times, the string appears to have been intended as a code comment, but that is based

on a qualitative assessment only.
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Rules / Suggestions:

• Provide hints for output STRING and say STRING

• Remove quotation marks from known keywords if the STRING is a single word (such as else and

end).

• Suggest that the STRING might be a comment.

7.2.7 Signature 7: “65 65 44 63”

Token Signature 65 65 44 63

Token Map ID ID = INTEGER LITERAL

N Overall 2,192

Rank Overall 7

% of Overall 2.0%

Error Code 11

Error Description MISSING USE

N in Error Code 1,837

Rank In Error Code 2

% of Error Code 22.4%

Error Code 12

Error Description INVALID OPERATOR

N in Error Code 186

Rank In Error Code 4

% of Error Code 5.9%

Error Code 14

Error Description DUPLICATE

N in Error Code 146

Rank In Error Code 7

% of Error Code 2.4%

Observations:

These errors are almost always an attempted assignment of integer to an ID, where the first token presents

as an ID instead of as a 35 INTEGER KEYWORD. In the sample, the first token was some variation of

Int... or int 1,894 times (86.4%). Other examples included the word decimal instead of number or some

attempt to make an assignment like set x = 1.

Rules / Suggestions:

• Capitalization and spell check of the first token.
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• Suggest a fix for assignment in common languages (int x = 1; or set x = 1).

• Suggest a fix for other language type declarations like float, double or decimal to number.

7.2.8 Signature 8: “39 65 42 65 42 65”

Token Signature 39 65 42 65 42 65

Token Map use ID . ID . ID

N Overall 2,145

Rank Overall 8

% of Overall 2.0%

Error Code 11

Error Description MISSING USE

N in Error Code 750

Rank In Error Code 39.1

% of Error Code %

Error Code 35

Error Description OTHER

N in Error Code 647

Rank In Error Code 3

% of Error Code 3.2%

Error Code 41

Error Description INPUT MISMATCH

N in Error Code 476

Rank In Error Code 2

% of Error Code 6.0%

Observations:

The error code 11 (MISSING USE) errors generally occur when there is a spelling error in one of the IDs in

the library chain. For example, use Libraries.System.Files with any of the 3 words spelled wrong, not

in the correct order or a non existent library will trigger this error

The error code 35 (OTHER) errors generally occur when the user types a use statement somewhere other

than at the beginning of the program. A large portion of the samples in this case contain sca↵olded code of

the Quorum basic game engine, but the programmer added the use statement in the wrong place.

The error code 41 (INPUT MISMATCH) errors generally occurs when the compiler is expecting and EOF,

but finds a use statement below the end of the Main method. This occurred in the Quorum dataset with

some frequency because of the sca↵olded code of the Quorum basic game engine. See Figure 7.1 for an

example of the misplaced code in lines 14-17.
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1 use Libraries.Game.Game
2 // INSERT YOUR "USE" STATEMENTS HERE
3

4 class Main is Game
5 action Main
6 StartGame ()
7 end
8 action CreateGame
9 // INSERT YOUR CODE HERE

10

11

12 end
13 end
14 use Libraries.Sound.Audio
15 Audio.clickSound
16 clickSound:Load(" media/astro/click.wav")
17 clickSound:Play()

Figure 7.1: Example Misplaced Code in Game Engine Sca↵olding

Rules / Suggestions:

• Check chain of IDs in the library calls for spelling errors and correct or likely matches to the Quorum

Library.

• If a use statement is detected with a code 41, suggest that the use statement needs to be at the top.

• Identify if the sca↵olded Quorum Game engine code is unmodified from the prior token patterns and

if so, suggest to the user that the code they typed after the game engine code is in the wrong place. A

use statement could be identified for the beginning insertion point (after line 2 in Figure 7.1)and the

other code in one of the game methods (such as after line 9 in Figure 7.1).
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7.2.9 Signature 9: “60”

Token Signature 60

Token Map end

N Overall 1,998

Rank Overall 9

% of Overall 1.8%

Error Code 35

Error Description OTHER

N in Error Code 1,296

Rank In Error Code 1

% of Error Code 6.4%

Error Code 41

Error Description INPUT MISMATCH

N in Error Code 401

Rank In Error Code 4

% of Error Code 5.1%

Error Code 43

Error Description PARSER NO VIABLE ALTERNATIVE

N in Error Code 263

Rank In Error Code 13

% of Error Code 0.8%

Observations:

The end statement is challenging for any type of compiler enhancement, because it is di�cult the users intent

is often ambiguous and a token signature line of 60 : end is the way it should always occur in Quorum on

a line by itself. The only real option for rules for this error are to look at control flow constructs that may

be open, like if, repeat, or action. Specifically, the hint engine could suggest the last layer of nesting to

check if that is intended behavior. Particularly with novices, there are lots of examples where they forget to

close their previous code block as opposed to intentionally nesting. Nonetheless, any hints here would have

to be carefully phrased as hints because it is very di�cult to provide code correction suggestions.

In the case of error code 43 (PARSER NO VIABLE ALTERNATIVE) the error generally occurs when there

is an incomplete or incorrect line of code in the previous line.

Rules / Suggestions:

• For missing end statements, a hint suggesting specific lines of code that might be missing ends, such

as lines containing the tokens: if, repeat, or action.
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• For error code 43, revert to the previous line of code and re-run the token signature analysis.

7.2.10 Signature 10: “35 65 44 63“

Token Signature 35 65 44 63

Token Map integer ID = INTEGER LITERAL

N Overall 1,785

Rank Overall 10

% of Overall 1.7%

Error Code 14

Error Description DUPLICATE

N in Error Code 1,213

Rank In Error Code 2

% of Error Code 19.7%

Error Code 42

Error Description LEXER NO VIABLE ALTERNATIVE

N in Error Code 347

Rank In Error Code 3

% of Error Code 4.5%

Error Code 43

Error Description PARSER NO VIABLE ALTERNATIVE

N in Error Code 182

Rank In Error Code 19

% of Error Code 0.6%

Observations:

The base signature token here is correct, which is the declaration and assignment of an INTEGER LITERAL

to an integer ID. The most common error code is 14 (DUPLICATE) and appears to be and accurate reflection

of the root cause. A casual observation seems to suggest that novices may think that using the same name

is OK if they use a di↵erent type since that situation occurs regularly in the top error code.

Rules / Suggestions:

• Use the lexical information available at the time of the error to point out the line number and type of the

previous declaration. For example; I noticed you are trying to declare an integer variable

called ID, but you previously declared a number variable on line X with the same name.

• Teaching explanation for not being able to reuse IDs on di↵erent types.
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7.3 General Observations

Having a suggestion list available of previously declared IDs during programming as a form of code completion

or hint suggestion or to use for spell checking) would have a big impact. This is implemented by Microsoft

with their IntelliSense technology for code completion, parameter info and lists. [Mic20]

An extremely common cause of various kinds of errors is the incorrect capitalization of the first letter of a

keyword. One of the first checks of any hint or error engine should be simple testing if an unrecognized token

would be recognizable and parseable if it was lower cased. This check should be followed by a spell checker

for known mis-spellings of keywords and standard library classes. Of the 108,110 error files, 3,461 (3.2%) of

the error lines across various token signatures started with the token Output which was classified as an ID

instead of the keyword output because of a simple capitalization error, similar to the example highlighted

by the ITiCSE working group [BDP+19].

There are numerous teaching opportunities which could be exploited through this form of program analysis.

We have a specialized example with our data set because the vast majority of our code samples come from

specific targeted curriculum pages on the Quorum website. It is easy to observe patterns with a naked

eye qualitative examination with the aid of the knowledge of the task assigned from a given page and the

foreknowledge of the correct answer. Future research endeavors along this line by specialized educational

researchers could enable the creation of a customized learning capability.

7.4 Threats to Validity

In this section we will use the five point general technical challenges to e↵ective error messages outlined in

the ITiSCSE paper [BDP+19] as a framework for an examination of the threats to validity of the Token

Signature approach. We will generally address the strengths and weakness of the approach in this context

using the nomenclature and definitions in the paper.

1. The Completeness Problem - It is impossible to ever reach 100% error detectability at the compiler

level if for no other reason than the universal understanding that it is impossible to definitively know

the users intent. This approach is not geared around detecting all possible errors at compile time

and then providing messages for every eventuality, but instead focuses on e�ciently correcting errors

already identified by the compiler using a heuristic approach as a positive step on the continuum

towards “better messages”.

2. The Locality Problem - My first version of a rules engine is decidedly localized in its nature and

the general shortcomings identified in the ITiCSE paper regarding locality will be equally challenging

with this approach. That being said, there are some cases and error types where token based rules

could provide suggestion-based advice on the type of error that a programmer should look in order to

shed light on the nature of the problem.
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3. The Mapping Problem - The mapping problem is a limited constraint for this approach, especially

with the Quorum language compiler, since the rules engine works on the actual token stream at face

value, not any type of mapped or pre-transformed code.

4. The Engineering Problem - The impact of an engineering challenge is reduced but not eliminated

in this approach for reasons stated in the Completeness response. The enhancement occurs after an

error is detected in second pass of parsing, not in higher architectural levels of type checking, code

generation or interpreting. This approach seeks to provide solutions and hints to correct problems,

not to perform additional engineering work during complicated phases of compilation. Notably, the

rules engine could easily be threaded and o✏oaded upon the occurrence of the first error while the

compile continued its work in the later stages of compilation. The threads would need to synchronize

before final error reporting, but the results of the rules engine will not influence or hold up continued

compilation.

5. The Liveness Problem - One of the key design features of this approach was the goal of providing

real-time or “live” hints in the context of a red squiggly line or highlight during coding inside the IDE.

The Quorum compiler and Quorum Studio IDE have a co-ordinated hint capability built-in which

we can utilize. The processing load for this from an engineering perspective is similar to the general

engineering problem because the computation and rules engine can be threaded to not interfere with

anything else that is going on. With the focus on the first hint, the processing requirement is further

limited to a single error until the user corrects it and encounters another.

7.4.1 Technical Progress Requirement

As a final discussion point, we agree with the conclusion of the ITiCSE working group that a necessary

requirement for progress to be achieved in compiler error enhancement, is the utilization of the latest de-

velopments in technologies such as machine learning and artificial intelligence and in Human Computer

Interaction to improve the overall readability of error messages and suggestions. The token signature ap-

proach was designed with exactly the type of heuristic pattern matching machine learning might provide

within the scope of an extensible rules engine. Since the computation is fully automated and “mechanical”

from an engineering standpoint, a machine learning or optimization algorithm can reasonably be expected

to improve the accuracy of the rules engine over time based on observed data. For example, a system like

this can observe which suggestions are actually selected by users given certain token patterns, and in the

next round o↵er better hint ranking similar to a search engine. With more extensive access to user level

data, the hint ranking and suggestions could be tailored at a user level based on observed experience.
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7.5 Considerations for Language Design for the Quorum Language

One of the foundations of the Quorum language is that it is evidence-based, meaning that the language design

choices should be supported by empirical studies where ever they are available to improve the language (in

terms of ease of use). The repository analysis in Chapters 6 and 7 have implications for language design based

on the actual usage of human beings on the curriculum o↵ered on the website. A few areas for consideration

that stood out to me that could be data-mined through the Analytics Dashboard or database for further

investigations follow:

• Single Quotation Marks - Not only is it di�cult as an experienced programmer to work with only

one set of quotation marks (in working with the JSON library for example), but there were numerous

errors and attempts by novices to use single quotation marks in various places. 6,887 error files had a

single quotation mark somewhere in the code body. The problem likely stems from the fact that most

other languages use single and double quotation marks to identify strings and that fact that Quorum

does not is unusual and causes confusion and errors.

• Input - The keyword input is involved with 6,572 errors (6.1% of overall )in our sample. There were

so many misuses around how to use it including i.) the need to cast it to a non-text type, ii.) the

format requirements of a string inside parenthesis, iii.) the necessity to use the text type in declaring

the text variable even though input always returns text, iv.) the inability to return a numeric type

directly and v.) confusion with other common ways that languages accept user input at the console.

• Repeat - The repeat flow control construct in Quorum didn’t generate as many errors as input,

but there were still 1,731 where it was involved. The errors should be mostly teachable with token

signature style hints, but the design itself may need to be looked at because the patterns in the errors

were common, such as repeat until x > 50 times, repeat until x is 50, python-style repeat

5,8 times, repeat while a (a is not boolean), repeat Add() 5 times (or Subtract, etc.), repeat

add 5, repeat * 5 or declaring a variable on the repeat line like a C-style for loop repeat while

integer a < 5).

• Cast - The keyword cast is involved with 5,427 (5.0% of overall) errors in the database. Common

mistakes included: i.) attempting to assign the variable being cast back on to itself with a di↵erent

type integer a = cast(integer, a) (where a is declared previously as a di↵erent type), ii.) using to

cast the variable to its same type but assign the result to a new type, iii.) integer a = cast(text,

‘‘hi’’), or iv.) forgetting an apostrophe between the parameters of the cast method. The compiler

errors are generally fairly accurate for these, but there are a lot of common errors that may suggest

examination.
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7.6 Conclusion

The goal of this analytical exercise was to develop an automated approach that can be used to provide

better feedback to programmers for the most common errors they make when they are learning to program.

Through an analysis of the database of 108,110 errors, the token signature approach was useful in identifying

root causes of errors across di↵erent types of compiler errors. In particular, we were able to identify patterns

in the most vague ANTLR error categories (Error Codes 43-PARSER— NO ALTERNATIVE, 35-OTHER,

41-INPUT MISMATCH, AND 42-LEXER NO ALTERNATIVE) which could be used to generate suggesting

rules to improve feedback. The automated technique is well suited for the application of other sophisticated

technologies in the areas of search, spell checking, grammar checking, and machine learning for pattern

matching.
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Chapter 8

Conclusion

8.1 Summary

The two randomized controlled trials conducted for this dissertation provided hundreds of thousands of code

samples across dozens of tasks, while the online Quorum database captured over 294,631 code samples. This

rich repository of data required automated analytic tools to process. The token-based approach coupled with

an analytic dashboard provided a platform to begin to understand and identify patterns of behaviors among

the student subjects. This dissertation will conclude by i.) reviewing the key findings of these studies, ii.)

examining the software development e↵ort to reach it and finally iii.) discuss where this project can go from

here.

8.1.1 Concurrency Paradigms using TAMs

This re-analysis of the data from a Randomized Controlled Trial on two popular concurrency programming

paradigms using improved token accuracy mapping provided new information on the root causes of why

students had di�culty with a particular task. We also explored that while Token Accuracy Maps have

limitations, they proved useful as a tool to gain insight into the overall accuracy of students when working

on these tasks, as well as a mechanism to investigate which specific parts of the program were problematic

for the students. TAMs might prove useful in future studies to track participant progress through tasks by

utilizing time-slice data and to find more information about which parts of programming language syntax

are causing problems for programmers.

8.1.2 GPU Study on Abstraction

This study provides evidence from a randomized controlled trial that computer science students learning GPU

programming for the first time performed worse using a higher level abstraction paradigm (Thrust) compared
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to a lower level paradigm (CUDA). The results also show that even the most simple version of a fundamental

task of parallel computing (o✏oading a basic vector addition computation to a coprocessor) is challenging for

students. We examined 4 research questions which corresponded to 4 specific di↵erent abstractions in GPU

programming for i.) memory allocation, ii.) array iteration, iii.) memory copy to/from host/coprocessor and

iv.) an o✏oaded kernel routine. In the 5 tasks where abstractions were tested, we observed that the low-level

CUDA abstraction paradigm tested equal to or better than the high-level Thrust abstraction paradigm in

every case among student learners. While our results are not a comprehensive or conclusive determination of

superiority for either CUDA or Thrust, the fine-grained examination of these specific abstractions provides

interesting and potentially useful information for language designers and instructors.

8.1.3 Token Signature Technique on Quorum Repository

The analysis of 108,110 compiler errors from a novice programming database using the Token Signature

Technique indicated concentrated error frequency results consistent with other large scale studies of compiler

errors of student learners using Java. A detailed examination of the token signature maps for each general

error category also demonstrated consistent and concentrated error frequency results. Empowered by this

demonstrated error concentration for our novel analysis technique, we analyzed and explored the leading

underlying error categories in search of patterns and root causes in order to identify improved error messaging

and hints through a rules-based approach.

8.2 Software Development

The following is a summary of the key pieces of software that I worked to collect and capture the data for

this project and to develop the automated analysis.

8.2.1 Automation of Token Accuracy Mapping Technique

The concurrency paradigm study we ran described in Chapter 4 describes the token accuracy mapping

technique in a high level of detail. There were a few very complicated development challenges with that

system though, including i.) the implementation of the Needleman-Wunsch string alignment algorithm and

the subsequent optimizations and adjustments for software token alignments, ii.) the automated tokenizer

in both Java and Quorum languages using the ANTLR parser generator, and iii.) the automated processing

tool to compare code samples, generate token accuracy maps, sorting and scoring techniques and reporting.

I did not invent the idea of Token Accuracy Mapping (Dr. Stefik did), but the automation of the process to

allow it to be run on the thousands of code samples we collected would not have been possible without the

software.
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8.2.2 Web-based Human Subjects Study Testing System

I built the first iteration of this system for the concurrency study after running into problems administering

and proctoring a multi-site replication study in concert with Software Carpentry, which we never managed to

collect su�cient data on. I made the decision to create this so that we could more easily get more participants

to do our studies at convenient times, rather than expecting them to come into labs to undertake studies

when they could be observed. The e↵ort was amazingly successful as we have now used the system for over

half a dozen studies with hundreds of participants, which would not likely have happened with proctored and

scheduled testing times. I’d like to thank P. Merlin Uesbeck for his help in developing additional features

and using it for his studies too.

8.2.3 Curriculum Development and Implementation for Hour of Code, Tutori-

als and Lessons

The curriculum design e↵ort was not software development per se, but it has been a massive e↵ort over the

years as we have continually provided new, free curriculum for novice programmers available on the Quorum

site, all accessible to the blind and visually impaired community. All of this curriculum required software

implementation, however, because it only exists in an online form. Once we built and implemented the online

IDE to enable people to build and run their Quorum programs easily in a browser, the e↵ort mushroomed

and Quorum’s impact has grown as a result.

The development e↵ort for the Astronomy-themed Hour of Code was an original part of the IDATA grant

proposal and I designed and built the entire 20 part activity, with a notable exception of the online 3D

graphics engine used in the finale thanks to William Allee and Dr. Stefik. It was our second Hour of Code

activity, so we had the knowledge from first experience to shape our design, but the usage from the activity

was pleasantly surprising. Referring to Table 6.1, the Astronomy Hour of Code is responsible for 43.4%

of the content in the Quorum repository, along with another 42.9% for the Quorum Lessons and Tutorials

which I had an extensive hand in reviewing and rewriting over the years.

8.2.4 Skynet Telescope Quorum Implementation for IDATA

The software development e↵ort required to implement the IDATA curriculum required us to build a complete

system to enable a blind or visually impaired student to send commands to a robotic telescope network, which

can take astronomical photos from telescopes around the world from a browser. Fortunately, the team at

University of North Carolina already built the robotic telescope network (https://skynet.unc.edu/) with

an API, but we had to build the entire network system for Quorum from scratch. In order to support

the curriculum for IDATA using this network, I had to build a number of libraries and plugin’s for Quorum

including i.) two plugins for Quorum to enable http communication through Java for desktop computers and

JavaScript for browsers to enable communication with Skynet, ii.) a full Quorum Network library modeled
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on the Python Requests library, iii.) a Quorum JSON library to read and write JSON data, iv.) a Quorum

Matrix library for astronomical computation and v.) a Quorum Random Number generator. It took 18

months to develop but the e↵ort was a success.

8.2.5 Analytics Dashboard

Although our automated testing system generates hundreds of thousands of events, I have found that manu-

ally inspecting the results yields insights that help shape automated systems. I can’t look at all the results,

but the dashboards I’ve built help me to see things in context and to be able to quickly shift between tasks,

users and groups to see patterns. The Token Signature method came to me while I was navigating around

user errors in the dashboard that I had filtered in a certain way and I started to see patterns. I knew we

wanted to apply the TAM technique on a localized basis within segments of code, but it was because of the

dashboard that I saw how to do it. This is the type of behavioral analytics that I set out to try to identify

so that we can improve computer science education and programmer productivity.

8.3 Future Software Development

There are a few natural ways to continue development around the Token Signature concept. The idea is at

its very early stages but it could be applied very broadly over time in a number of directions.

• Enhanced Error Message System - The first obvious area is to build the enhanced error message

system into the Quorum compiler in the Compiler Error Manager. The hooks for the system are

already there and when the Compiler Error Manager is triggered, it has access to everything it needs

to compute a Token Signature and put out enhanced messages.

• Implement Rules Engine - The next obvious area in conjunction with the first is to build an

extensible rules engine that will enable additional rules to be built and implemented into the error

reporting and hint generation system. The idea would be that once the Compiler Error Manager has

an error and a Token Signature, it invokes the rules engine for a hint or enhanced message to see if

anything is applicable.

• Tie into Quorum Studio IDE - The final piece of the “delivery” system for the enhanced messaging

or code suggestions system would be to tie into the new Quorum Studio IDE where certain rules could

generate auto-completion or auto-correction options, hints and messages for live, on the fly, assistance

while programming. Its the ultimate way to provide the kind of immediate feedback to student learners

that Becker et al. [BDP+19] refer to.

• Advanced Rules Development - After the full implementation of the “delivery” system, there

are untold ways that rules could potentially be developed through additional rules, advanced pattern
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recognition, machine learning, spell checking, grammar-style checking or other ways of heuristically

attempting to divining the programmer’s intent or common error patterns.

8.4 Future Research

There are some obvious studies that could be done after the enhanced error message and hint delivery system

is built in order to evaluate its e↵ectiveness. I’d first look to design studies similar to other comparison studies

that have been conducted using a two group design, with one using standard error messages and the other

using enhanced messages. I also think it would be interesting to conduct a study over the course of a

semester of instruction in early stage programming classes to measure improvements in student performance

with and without the enhancements. Implementing the Token Signature analysis in other languages on other

compiler error repositories would also be very interesting. In particular, the Blackbox data [BKMU14] set

is an excellent candidate because of both its size and the extent to which it has already been examined by

other researchers.

Further research in the area of teaching and learning computer programming would also be an interesting

area to explore. Taking inspiration from the computing education practitioners research wish list assembled

by Denny et al. [DBC+19], using this token signature technique to study the highly rated questions “What

fundamental programming concepts are the most challenging for students?” and “‘How and when is it best

to give students feedback on their code to improve learning?” could potentially prove very interesting with

an extensible and malleable rules and hint delivery system.
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Appendix A

Methods and Materials For RCT on

Parallel Programming from Chapter 4

This appendix contains materials for a paper that describes a randomized controlled trial designed to em-

pirically examine the human factors impacts of two di↵ering concurrency paradigms by measuring student

performance on three common parallel programming problems using one of the two paradigms. In addi-

tion to providing comparative empirical data of the students’ performance on their first introduction to the

paradigms, we sought to further develop an empirical measurement technique designed to measure token

accuracy. Our long term purpose is to contribute to improving both computer science education and the

future design of programming languages and approaches. Since concurrency is an increasingly important

area and generally regarded as being hard to learn, a better understanding of precisely what areas are

stumbling blocks may help the programming language community improve their designs and find creative

approaches around problem areas. The primary contribution of this paper is the empirical data from the

study showing performance di↵erences between programming paradigms. A secondary contribution is that

this paper documents and further develops the use of the Token Accuracy Map (TAM) technique as a tool

to provide more detailed data about the exact nature of the problem areas so that teaching techniques can

be refined.

A.1 Methods

To evaluate our research questions on student performance and the usefulness of Token Accuracy Mapping,

we conducted a randomized controlled trial with a repeated measures design. We compared the students’

performance on three successive programming tasks using one of two paradigms. Students were randomly

assigned to either the threads or process-oriented programming group by the testing application using Strat-

ified Randomization in a manner recommended by the CONSORT 2010 Statement for transparent reporting
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of trials [Gro09]. The pre-task demographic survey determined their self-reported level of education (year in

school) and then randomly assigned them to one of the two groups, using an algorithm to keep the groups

balanced at each level by randomly selecting the paradigm within each educational group. This random-

ization process was designed to ensure a roughly equal number of participants at each grade level in each

group. Once assigned to a group, the testing application presented the same tasks to both groups, along with

reference code samples in the same paradigm as their task. The timing and instructions were held constant

in both groups so that we could directly observe the di↵erences between the paradigms and grade levels.

We tracked two dependent variables in this experiment. The first was a straightforward time on task,

measured in seconds. Since the participant submission was not compiled or run during the experiment,

the time measurement period was from the time the task was presented until the student submitted their

answer. The second dependent variable is the accuracy score for a participant on a task as measured by

a token accuracy mapping algorithm [SS13, Dal16]. The accuracy score was determined automatically by

the scoring algorithm and is reflected as a percentage of correctness from 0% to 100%. The independent

variables are i.) the paradigm group (Thread or Process), ii.) the level of education and iii.) the task. The

level of education was self reported as Freshman, Sophomore, Junior, Senior or Graduate and all student

participants were from courses o↵ered at a university in the western United States. The tasks were numbered

from 1 to 3 and were the same for each group. We also tracked other demographic information that was

not used for classification, including age, gender, native language, and self-reported programming and job

experience. Although self-reporting of programming experience is imperfect, it is a reliable approach as

documented by Siegmund et al. [SKL+14]

We made the study design decision to control for teaching method variations between groups by standardizing

the training materials provided to each group. In order to teach students the concepts and syntax required

to complete the tasks in this experiment, the participants were provided with correct code samples in the

paradigm for their group. These code samples, along with a description of what the code did, provided as

standardized a learning experience as possible for our purpose. Each group received the same number of

code samples and we did not provide any customized instruction for either group. We attempted to give

code samples that would illustrate the techniques required to solve the three problems we tested, but there

could have been bias unintentionally introduced on particular tasks for either group. It was beyond the scope

of this experiment to test for variations in teaching and although our method was likely not the optimal

teaching method, it was designed to be as consistent between groups as possible.

A.1.1 Materials

In an attempt to accurately and specifically measure the impact of the programming paradigm instead of

comparative language syntax, we translated both paradigms into a neutral language, Quorum. Quorum was

designed to be a straightforward, evidence-based language with minimal syntax for natural speaking through
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Task Description
Using the code sample given to you, write a program that starts two concurrent things, named F and G.
The thing F, should show on the screen the word ’hello’. The thing G should show on the screen the word
’world’. After both F and G have finished show the word ’Done’. The whole program should start in a thing
named Main.

Task Sample Output
The final stu↵ shown on the screen should be either:

hello

world

Done

or

world

hello

Done

Figure A.1: Task 1 Description.

screen reading programs for accessibility [quo18]. We used a Java-style syntax for threads as a model to

create a hypothetical Quorum implementation. Similarly, we used an occam-style syntax for the process-

based paradigm. Hypothetical Quorum code samples were then created to be as similar as possible to each

other. Minor syntactic di↵erences were required to implement the di↵erent programming paradigms (for

example, the inclusion of the keyword concurrent in the Process group and synchronized in the Threads

group), but otherwise the Quorum portion of the language was the same in both groups.

The code samples for both groups are included in the Appendix. The samples were given to the participants

and were available when they completed the tasks. The task descriptions and instructions were also identical

for each group for each task.

Task 1: Two Concurrent Objects

The description for Task 1, shown in Figure A.1, asks the participant to write a program to launch two

concurrent objects which each print a statement. This task is similar to the code sample provided and it was

intended to be a warm-up task to give the participant practice in setting up the code to execute the two tasks

concurrently in the paradigm. The use of the non-technical term “things” in all of the Task Descriptions was

deliberate for methodological reasons, specifically, to allow the Task Descriptions to be identical between the

two groups and therefore not bias or inadvertently provide an advantage to either group. Since a “thing”

could be either a process method or a thread depending on the group, we used a generic non-technical term

instead. To the extent that the non-technical term may have adversely impacted student performance in the

study, the e↵ect should have been the same for each group since it was a neutral term. The solutions to this

task are shown in Figure A.2 and Figure A.3.
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1 class Main

2 action F

3 output "hello"

4 end

5

6 action G

7 output "world"

8 end

9

10 action Main

11 concurrent

12 F()

13 G()

14 end

15 output "Done"

16 end

17 end

Figure A.2: Task 1 Solution (Process).

1 class F is Thread

2 action Run

3 output "hello"

4 end

5 end

6

7 class G is Thread

8 action Run

9 output "world"

10 end

11 end

12

13 class Main

14 action Main

15 F t1

16 G t2

17 t1:Run()

18 t2:Run()

19 check

20 t1:Join()

21 t2:Join()

22 detect e

23 end

24 output "Done"

25 end

26 end

Figure A.3: Task 1 Solution (Threads).
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Task Description
Using the code sample given to you, write a program that has two things named Producer, one thing
named Consumer, and one thing named Main.

The producer generates integers in ascending order, starting at zero, forever. The consumer reads values
from the producers forever, showing the values on the screen with the words ’Received producer [1 or 2]: ’
and then the value. The consumer may not skip any values generated by either producer. The thing main
starts the producers and the consumer.

Task Sample Output
The final stu↵ shown on the screen will be two sets of numbers increasing forever. The consumer could
consume a value from either producer at any time. For example:

Received producer 2: 1

Received producer 1: 1

Received producer 1: 2

Received producer 2: 2

Received producer 2: 3

Received producer 2: 4

...

Figure A.4: Task 2 Description.

Task 2: Producer-Consumer

The task description shown in Figure A.4 lays out the detailed request to create a dual producer, single

consumer system controlled by a driver program called Main. We deliberately called the objects ’things’ in

the description since the ’things’ are methods in the Process paradigm and classes in the Threads paradigm.

We create the complication of incrementing successive values from each producer with the restriction that

no values can be skipped. These additions to the code sample require that the shared memory variable used

by each producer must be locked after it is generated until it is consumed. An implied constraint is that the

consumer must not attempt to consume when there is no data available. Together these requirements and

constraints form the invariant for a Producer-Consumer problem. The solutions to this task are shown in

Figure A.5 and Figure A.6.

Task 3: Readers-Writers

The third task is asking the participants to implement a variation of the Readers-Writers problem with 3

threads where multiple concurrent objects/processes access and write to a shared memory location. The

sample provides the structure required to implement the task described in Figure A.7, but does so with only

two threads. The solutions to this task are shown in Figure A.8 and Figure A.9.

A.1.2 Procedure

In order to administer this experiment, we created a web-based testing application to run in a standard

browser. It administers the experiment and measures and tracks timing of events and snapshots of the
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1 class Main

2 action Producer(Writer <integer > c)

3 integer i = 0

4 repeat while true

5 c:Write(i)

6 i = i + 1

7 end

8 end

9

10 action Consumer(Reader <integer > p1, Reader <integer > p2)

11 repeat while true

12 integer x = 0

13 choose

14 x = p1:Read()

15 output "Received Producer 1: " + x

16 or

17 x = p2:Read()

18 output "Received Producer 2: " + x

19 end

20 end

21 end

22

23 action main

24 Channel <integer > c1

25 Channel <integer > c2

26 concurrent

27 Producer(c1:GetWriter ())

28 Producer(c2:GetWriter ())

29 Consumer(c1:GetReader (), c2:GetReader ())

30 end

31 end

32 end

Figure A.5: Task 2 Solution (Process)
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1 class N
2 integer n = 0
3 end
4

5 class Producer is Thread
6 N n = undefined
7 action Set(N n)
8 me:n = n
9 end

10 action Run
11 integer i = 0
12 repeat while true
13 synchronized(N)
14 if n:n = 0
15 n:n = i
16 i = i + 1
17 end
18 end
19 end
20 end
21 end
22

23 class Consumer is Thread
24 N n1 = undefined
25 N n2 = undefined
26 action Set (N n1, N n2)
27 me:n1 = n1
28 me:n2 = n2
29 end
30 action Run
31 repeat while true
32 synchronized(N)
33 if n1:n not= 0
34 output "Received p1: " + n1:n
35 n1:n = 0
36 elseif n2:n not= 0
37 output "Received p2: " + n2:n
38 n2:n = 0
39 end
40 end
41 end
42 end
43 end
44

45 class Main
46 action Main
47 N n1
48 N n2
49 Producer p1
50 Producer p2
51 Consumer c
52 p1:Set(n1)
53 p2:Set(n2)
54 c:Set(n1 , n2)
55 p1:Run()
56 p2:Run()
57 c:Run()
58 check
59 p1:Join()
60 p2:Join()
61 c:Join()
62 detect e
63 end
64 end
65 end

Figure A.6: Task 2 Solution (Threads)
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Task Description
Using the code sample given to you, write a program that synchronizes counting across multiple things. In
the thing Main, the goal is to use other things that facilitate counting. In this program, N contains an
integer value that starts at 0. In two copies of the thing named P, facilitate the incrementation of the value
held by N. When the program finishes, the final value in N should be equal to 20. Show on the screen the
final value of N. The following image may help describe what we want you to program in this task. There
must be two P things and one N thing started by Main.

Type your code in the text box to the lower right.

Task Sample Output The final stu↵ shown on the screen should be:

20

Figure A.7: Task 3 Description.
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1 class Main

2 action P(Reader <integer > in , Writer <integer > out , Writer <boolean > req)

3 integer i=0

4 repeat while i<10

5 req:Write(true)

6 integer myN = in:Read()

7 out:Write(myN + 1)

8 i = i + 1

9 end

10 end

11

12 action N(Writer <integer > out1 , Reader <integer > in1 , Writer <integer >

out2 , Reader <integer > in2 , Reader <boolean > req1 , Reader <boolean > req2

)

13 integer n=0

14 repeat while n < 20

15 boolean x = false

16 choose

17 x = req1:Read()

18 out1:Write(n)

19 n = in1:Read()

20 or

21 x = req2:Read()

22 out2:Write(n)

23 n = in2:Read()

24 end

25 end

26 output n

27 end

28

29 action Main

30 Channel <integer > c1a

31 Channel <integer > c1b

32 Channel <integer > c2a

33 Channel <integer > c2b

34 Channel <boolean > r1

35 Channel <boolean > r2

36 concurrent

37 N(c1a:GetWriter (), c2a:GetReader (), c1b:GetWriter (), c2b:GetReader

(), r1:GetReader (), r2:GetReader ())

38 P(c1a:GetReader (), c2a:GetWriter (), r1:GetWriter ())

39 P(c1b:GetReader (), c2b:GetWriter (), r2:GetWriter ())

40 end

41 end

42 end

Figure A.8: Task 3 Solution (Process).
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1 class N

2 integer value = 0

3 end

4

5 class P is Thread

6 N n = undefined

7 integer i = 0

8 action Set(N n)

9 me:n = n

10 end

11 action Run

12 repeat while i < 10

13 synchronized(n)

14 integer temp = 0

15 temp = n:value

16 temp = temp + 1

17 n:value = temp

18 end

19 i = i + 1

20 end

21 end

22 end

23

24 class Main

25 action main

26 N n

27 P p1

28 P p2

29 p1:Set(n)

30 p2:Set(n)

31 p1:Run()

32 p2:Run()

33 check

34 p1:Join()

35 p2:Join()

36 detect e

37 end

38 output "Final value of N: " + n:value

39 end

40 end

Figure A.9: Task 3 Solution (Threads).
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code entry area while the participants are programming. Participants did not have any knowledge of what

language was being used, consistent with the design intention of having the study be as language syntax

neutral as possible.

A.2 Code Samples

A.2.1 Process Group

Code Sample 1 - Process Group

This code will execute two things named F and G at the same time and show the results on the screen.

class Main

action F

output 1

output 2

end

action G

output 3

output 4

end

action Main

concurrent

F()

G()

end

output "Done"

end

end

The code will display any of the following statements:

Case1 Case2 Case3 Case4 Case5 Case6

1 1 1 3 3 3

2 3 3 4 1 1

3 2 4 1 2 4

4 4 2 2 4 2

Done Done Done Done Done Done
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Code Sample 2 - Process Group

This code will execute three things at the same time, including two copies of F and 1 copy of G and show

the results on the screen.

class Main

action F(Writer<integer> c, integer x)

c:Write(x)

c:Write(x)

end

action G(Reader<integer> c1, Reader<integer> c2)

integer i = 0

repeat while i < 4

integer x = 0

choose

x = c1:Read()

output x

or

x = c2:Read()

output x

end

i = i + 1

end

end

action Main

Channel<integer> c1

Channel<integer> c2

concurrent

F(c1:GetWriter(), 1)

F(c2:GetWriter(), 2)

G(c1:GetReader(), c2:GetReader())

end

output "Done"

end

end

The code will display any of the following statements:

Case1 Case2 Case3 Case4 Case5 Case6

1 1 1 2 2 2

1 2 2 1 1 2

2 1 2 1 2 1

2 2 1 2 1 1

Done Done Done Done Done Done
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Code Sample 3 - Process Group

This code will execute two things named A and B at the same time and show the results on the screen.

class Main

action A(Reader<integer> request, Writer<integer> reply)

repeat while true

integer x = request:Read()

reply:Write(x * 2)

end

end

action B(Writer<integer> request, Reader<integer> reply)

integer i = 0

repeat while true

request:Write(i)

integer y = reply:Read()

output y

i = i + 1

end

end

action Main

Channel<integer> c1

Channel<integer> c2

concurrent

A(c2:GetReader(), c1:GetWriter())

B(c2:GetWriter(), c1:GetReader())

end

end

end

The code will display a list of even numbers starting at 0 forever

Output

0

2

4

6

...
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A.2.2 Threads Group

Code Sample 1 - Threads Group

This code will execute two things named F and G at the same time and show the results on the screen.

class F is Thread

action Run

output 1

output 2

end

end

class G is Thread

action Run

output 3

output 4

end

end

class Main

action main

F f

G g

f:Run()

g:Run()

check

f:Join()

g:Join()

detect e

end

output "Done"

end

end

The code will display any of the following statements:

Case1 Case2 Case3 Case4 Case5 Case6

1 1 1 3 3 3

2 3 3 4 1 1

3 2 4 1 2 4

4 4 2 2 4 2

Done Done Done Done Done Done
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Code Sample 2 - Threads Group

This code will execute three things at the same time, including two copies of F and 1 copy of G and show

the results on the screen.

class N

integer value = 0

end

class F is Thread

N n = undefined

integer x = 0

action Set(N n, integer x)

me:n = n

me:x = x

end

action Run()

i = 0

repeat while i < 2

synchronized(N)

if n:value = 0

n:value = x

i = i + 1

end

end

end

end

end

class G is Thread

N n1 = undefined

N n2 = undefined

action Set (N n1, N n2)

me:n1 = n1

me:n2 = n2

end

action Run()

i = 0

repeat while i < 4

synchronized(N)

if n1:value not= 0

output n1:value

n1:value = 0

i = i + 1

elseif n2:value not= 0

output n2:value

n2:value = 0

i = i + 1

end

end

end

end

end

public class Main

action Main

F f1

F f2

G g

N n1

N n2

f1:Set(n1, 1)

f2:Set(n2, 2)
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g:Set(n1, n2)

f1:Run()

f2:Run()

g:Run()

check

f1:Join()

f2:Join()

g:Join()

detect e

end

output "Done"

end

end

The code will display any of the following statements:

Case1 Case2 Case3 Case4 Case5 Case6

1 1 1 2 2 2

1 2 2 1 1 2

2 1 2 1 2 1

2 2 1 2 1 1

Done Done Done Done Done Done
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Code Sample 3 - Threads Group

This code will execute two things named A and B at the same time and show the results on the screen.

class N

integer value = 0

boolean newItem = false

end

class A is Thread

N n = undefined

action Set(N n)

me:n = n

end

action Run()

repeat while true

synchronized(N)

if n:newItem = true

n:value = n:value * 2

n:newItem = false

end

end

end

end

end

class B is Thread

N n = undefined

action Set(N n)

me:n = n

end

action Run()

integer i = 1

repeat while true

synchronized(N)

if n:newItem = false

integer y = n:value

output y

n:value = i

i = i + 1

n:newItem = true

end

end

end

end

end

class Main

action Main()

N n

A a

B b

a:Set(n)

b:Set(n)

a:Run()

b:Run()

check

a:Join()

b:Join()

detect e

end

end

end
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The code will display a list of even numbers starting at 0 forever

Output

0

2

4

6

...

128



Appendix B

Materials For RCT on GPU

Programming from Chapter 5

B.1 Group 1 - CUDA

Group 1 - Reference Sheet given to the CUDA group. The following PDF file shows the instructions

with formatting as presented to user through the electronic testing system.

(Remainder of page intentionally left blank.)
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Group	1	–	Reference	Sheet	
	

Overview:	
You	are	programming	in	an	environment	where	you	have	a	host	computer	with	an	attached	co-processor	capable	of	higher	
performance	than	the	host.	Since	you	are	working	on	an	application	where	performance	is	a	key	design	specification,	it	is	
advantageous	for	you	to	run	certain	methods	on	the	co-processor	to	maximize	performance.	
	
The	following	language	reference	provides	valid	error-free	C++	code	and	contains	all	of	the	information	you	will	need	in	
order	to	complete	the	tasks.	Not	all	language	instructions	are	required	for	every	task.	

Language	Reference:	

Variable	Types	
The	C++	variable	types	used	in	these	examples	are	(they	are	referred	to	as	‘variabletype’	in	these	instructions):	

$(-� � ��$(- " +�-0* �

!&)�-� � ��!&)�-�-0* �

$(-�� � ��$(- " +�*)$(- +�

!&)�-�� � ��!&)�-�*)$(- +�

Kernel	Method	
A	kernel	method	contains	the	code	for	a	method	that	is	run	on	the	co-processor.	To	specify	a	kernel	to	run	on	the	co-
processor	on	your	system	use	the	following	format	(this	example	has	a	method	named	‘kernelName’	that	returns	type	
void	and	has	3	parameters:	an	‘int’	and	two	pointers	of	type	‘int’.):	

��"&)��&���

/)$��% +( &��' ��$(-�(��$(-�����$(-�����2�

� ���)�0�)!�' -#)���)� �") ,�# + �

3�

Memory	Allocation	
Host:	
To	allocate	memory	on	the	host	for	the	vector,	use	the	following	format.	This	code	allocates	the	memory	space	on	the	
host	for	a	vector	named	‘myVector’	which	contains	‘num’	items	of	type	‘variabletype’:	

/�+$��& -0* ��'0� �-)+���/�+$��& -0* ����'�&&)��(.'�,$1 )!�/�+$��& -0* ����

	
Co-processor:	
In	order	for	the	kernel	to	run,	the	data	must	be	present	in	the	memory	of	the	co-processor,	which	can	be	done	using	the	
following	format	(this	code	allocates	the	memory	space	on	the	co-processor	for	an	integer	vector	named	‘myVector’	which	
contains	‘num’	items	of	type	‘variabletype’):	

/�+$��& -0* ��'0� �-)+��������

�.����&&)���/)$�������'0� �-)+��(.'�,$1 )!�/�+$��& -0* ����

Memory	Deallocation	
Host:	
To	free	memory	on	the	host	used	by	a	vector,	use	the	following	format:	

� & - ����/�+$��& ��' ��

	
Co-processor:	
To	free	memory	on	the	co-processor	used	by	a	vector,	use	the	following	format:	
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�.���+  �/�+$��& ��' ���

	

Iterating	loop	
An	 iterating	 loop	 traverses	 all	 the	elements	 in	 the	 vector	one	at	 a	 time.	 For	 this	 system,	use	 an	 iterating	 loop	 in	 the	
following	format:	

!)+��$(-�$��	��$���(��$����2�

� ����)�0�)!�&))*��)� �") ,�# + �

3�

Copy	Data	To/From		Host/Co-processor	
To	move	data	from	the	host	to	the	co-processor,	use	the	following	format:	

�.��� '�*0�!+)'� �-)+��' ��-)� �-)+��' ��(.'�,$1 )!�/�+$��& -0* ����.��� '�*0�),-�)� /$� ���

�

To	move	data	from	the	co-processor	to	the	host,	use	the	following	format:	
�.��� '�*0�!+)'� �-)+��' ��-)� �-)+��' ��(.'�,$1 )!�/�+$��& -0* ����.��� '�*0� /$� �)�),-���

Launch	a	kernel	on	the	device	
To	launch	the	kernel	method	on	the	co-processor	use	the	following	format	(the	values	1,1	inside	the	<>	are	configuration	
settings	whose	meanings	are	not	relevant	to	this	study,	but	are	necessary	as	written):	

% +( &��' ���
�
����*�+�' - +,���

	
When	a	kernel	is	launched	on	the	co-processor,	the	host	program	will	continue.	In	order	to	pause	execution	on	the	host	
until	the	kernel	on	the	co-processor	finishes	use	the	following	format:	

�.���0(�#+)($1 ����

�

�



B.2 Group 2 - Thrust

Group 2 - Reference Sheet given to the Thrust group. The following PDF file shows the instructions

with formatting as presented to user through the electronic testing system.

(Remainder of page intentionally left blank.)
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Group	2	–	Reference	Sheet	
	

Overview:	
You	are	programming	in	an	environment	where	you	have	a	host	computer	with	an	attached	co-processor	capable	of	higher	
performance	than	the	host.	Since	you	are	working	on	an	application	where	performance	is	a	key	design	specification,	it	is	
advantageous	for	you	to	run	certain	methods	on	the	co-processor	to	maximize	performance.	
	
The	following	language	reference	provides	valid	error-free	C++	code	and	contains	all	of	the	information	you	will	need	in	
order	to	complete	the	tasks.		Not	all	language	instructions	are	required	for	every	task.	

Language	Reference:	

Variable	Types	
The	C++	variable	types	used	in	these	examples	are	(they	are	referred	to	as	‘variabletype’	in	these	instructions):	

%).� � ��%).!#!,�.2+!�

"'*�.� � ��"'*�.�.2+!�

%).�� � ��%).!#!,�+*%).!,�

"'*�.�� � ��"'*�.�+*%).!,�

Kernel	Method	
A	kernel	method	contains	the	code	for	a	method	that	is	run	on	the	co-processor.	To	specify	a	kernel	to	run	on	the	co-
processor	on	your	system	use	the	following	format	(this	example	has	a	method	named	‘kernelName’	that	returns	type	
void	and	has	3	parameters:	an	‘int’	and	two	pointers	of	type	‘int’.):	

��#'*��'���

0*% �&!,)!'��(!��%).�)��%).�����%).�����3�

� ���* 2�*"�(!.$* ��* !�#*!-�$!,!�

4�

Memory	Allocation	
Host:	
To	allocate	memory	on	the	host	for	the	vector,	use	the	following	format.	This	code	allocates	the	memory	space	on	the	
host	for	a	vector	named	‘myVector’	which	contains	‘num’	items	of	type	‘variabletype’:	

.$,/-.��$*-.�0!�.*,0�,%��'!.2+!���(2�!�.*,�)/(���

	
Co-processor:	
In	order	for	the	kernel	to	run,	the	data	must	be	present	in	the	memory	of	the	co-processor,	which	can	be	done	using	the	
following	format	(this	code	allocates	the	memory	space	on	the	co-processor	for	an	integer	vector	named	‘myVector’	which	
contains	‘num’	items	of	type	‘variabletype’):	

.$,/-.�� !0%�!�0!�.*,0�,%��'!.2+!���(2�!�.*,�)/(���

Memory	Deallocation	
Host:	
Memory	used	by	vectors	deallocate	automatically	when	the	vector	goes	out	of	scope	so	it	is	unnecessary	to	do	it	manually	
unless	the	memory	is	needed	immediately.	To	deallocate	a	vector	immediately,	use	the	following	format:	

(2�!�.*,��'!�,����

(2�!�.*,�-$,%)&�.*�"%.����

	
Co-processor:	
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Same	as	host	dellocation.	

Iterating	loop	
An	 iterating	 loop	 traverses	 all	 the	elements	 in	 the	 vector	one	at	 a	 time.	 For	 this	 system,	use	 an	 iterating	 loop	 in	 the	
following	format:	

���$%-��* !�"%''-���0!�.*,�)�(! �(2�!�.*,�1%.$����*)-.�).�0�'/!��

.$,/-.��"%''�(2�!�.*,��!#%)����(2�!�.*,�!) ����
���

�

���$%-��* !�.,�)-"*,(-�!0!,2�!'!(!).�%)��)�0!�.*,����2��  %)#�!��$�!'!(!).�%)�0!�.*,���.*�!��$�!'!(!).�%)�0!�.*,����

�''�.$!�0!�.*,-��,!�*"�.2+!�50�,%��'!�2+!6�

.$,/-.��.,�)-"*,(����!#%)������!) �������!#%)�������!#%)����.$,/-.��+'/-0�,%��'!�2+!������

Copy	Data	To/From		Host/Co-processor	
Assuming	myHostVector	is	a	thrust::host_vector	and	myDevVector	is	a	thrust::device_vector.	
	
To	move	data	from	the	host	to	the	co-processor,	use	the	following	format:	

(2�!0�!�.*,���(2�*-.�!�.*,��

�

To	move	data	from	the	co-processor	to	the	host,	use	the	following	format:	
(2�*-.�!�.*,���(2�!0�!�.*,��

Execute	the	add	operation	on	the	co-processor	
The	add	operation	to	add	Y	=	Y	+	X	requires	an	iterating	loop	using	thrust::transform		
	
To	launch	a	custom	kernel	use	the	following	format:	

�!,)!')�(!�)/(�!,�*"��'*�&-��)/(�!,�*"�.$,!� -����&!,)!'�+�,�(!.!,-��

�

�����������
���	������������

0�,%��'!�2+!��0�,%��'!��(!���.$,/-.��,�1�+*%).!,���-.��0!�.*,��(!�	����

�



Appendix C

Token Signatures of Common Errors

C.1 Description

This section contains tables of token signatures and error counts for the 10 most common token signatures

based on the number of actual compiler errors for each one.
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C.2 Error Code 43: PARSER NO VIABLE ALTERNATIVE

Rank
Error

Code
Token Signature Token Map N %

1 43 65 ID 4,854 14.7%

2 43 65 66 ID STRING 2,891 8.8%

3 43 2,457 7.5%

4 43 66 STRING 1,669 5.1%

5 43 1 output 762 2.3%

6 43 63 INTEGER LITERAL 519 1.6%

7 43 1 65 output ID 463 1.4%

8 43 1 66 output STRING 462 1.4%

9 43 65 65 65 ID ID ID 440 1.3%

10 43 1 58 65 output ID 372 1.1%

11 43 OMITTED OMITTED FOR LENGTH 299 0.9%

12 43 1 65 65 output ID ID 273 0.8%

13 43 60 end 263 0.8%

14 43 1 44 65 output = ID 262 0.8%

15 43 39 42 65 42 65 42 65 use . ID . ID . ID 231 0.7%

16 43 39 65 42 65 42 65 use ID . ID . ID 217 0.7%

17 43 1 44 66 output = STRING 201 0.6%

18 43 37 65 44 19 66 text ID = input STRING 200 0.6%

19 43 35 65 44 63 integer ID = INTEGER LITERAL 182 0.6%

20 43 20 66 say STRING 180 0.5%

21 43
56 65 49 65 57 51 56 65 50

65 57 49 56 65 52 65 57
( ID + ID ) * ( ID - ID ) + ( ID / ID ) 171 0.5%

22 43 37 65 44 66 text ID = STRING 154 0.5%

23 43 19 66 input STRING 148 0.4%

24 43 63 65 INTEGER LITERAL ID 144 0.4%

25 43 65 49 65 ID + ID 132 0.4%

26 43 1 66 65 output STRING ID 117 0.4%

27 43
65 63 43 65 63 34 65 65 65

65 19

ID INTEGER LITERAL , ID INTEGER LITERAL : ID

ID ID ID input
114 0.3%

28 43 65 63 ID INTEGER LITERAL 112 0.3%

29 43
56 63 49 63 57 51 56 63 50

63 57 49 56 63 52 63 57

( INTEGER LITERAL + INTEGER LITERAL ) * (

INTEGER LITERAL - INTEGER LITERAL ) + (

INTEGER LITERAL / INTEGER LITERAL )

112 0.3%

30 43 65 65 65 65 65 ID ID ID ID ID 106 0.3%

31 43 65 66 49 65 ID STRING + ID 89 0.3%

32 43 20 58 65 65 say ID ID 88 0.3%

33 43 65 34 65 ID : ID 85 0.3%

34 43 65 63 43 65 63 ID INTEGER LITERAL , ID INTEGER LITERAL 85 0.3%

35 43 1 37 65 output text ID 81 0.2%

36 43 20 58 65 say ID 79 0.2%

37 43 65 45 65 ID >ID 77 0.2%

38 43 65 63 24 ID INTEGER LITERAL times 77 0.2%

39 43 37 65 44 66 49 37 65 44 66 text ID = STRING + text ID = STRING 74 0.2%

40 43 65 56 57 ID ( ) 70 0.2%
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C.3 Error Code 35: OTHER

Rank
Error

Code
Token Signature Token Map N %

1 35 60 end 1,296 6.4%

2 35 1,259 6.3%

3 35 39 65 42 65 42 65 use ID . ID . ID 647 3.2%

4 35 37 65 66 text ID STRING 485 2.4%

5 35 35 63 65 44 63
integer INTEGER LITERAL ID =

INTEGER LITERAL
459 2.3%

6 35 1 66 output STRING 361 1.8%

7 35 26 else 331 1.6%

8 35 66 STRING 324 1.6%

9 35 33 65 action ID 294 1.5%

10 35 1 65 66 output ID STRING 279 1.4%

11 35 65 65 42 65 42 65 ID ID . ID . ID 248 1.2%

12 35
56 65 49 65 57 51 56 65 50

65 57 49 56 65 52 65 57
( ID + ID ) * ( ID - ID ) + ( ID / ID ) 203 1.0%

13 35 1 65 output ID 203 1.0%

14 35 5 65 66 elseif ID STRING 199 1.0%

15 35 37 44 19 56 66 57 text = input ( STRING ) 197 1.0%

16 35 1 65 63 output ID INTEGER LITERAL 140 0.7%

17 35 35 44 63 integer = INTEGER LITERAL 129 0.6%

18 35 61 65 17 65 class ID is ID 121 0.6%

19 35 37 36 44 19 56 66 57 text number = input ( STRING ) 116 0.6%

20 35 66 49 66 STRING + STRING 110 0.5%

21 35 37 65 44 66 66 text ID = STRING STRING 102 0.5%

22 35 65 44 65 44 63 ID = ID = INTEGER LITERAL 97 0.5%

23 35 65 42 65 42 65 ID . ID . ID 93 0.5%

24 35 65 65 49 65 ID ID + ID 92 0.5%

25 35 65 65 34 65 56 63 43 63 57
ID ID : ID ( INTEGER LITERAL ,

INTEGER LITERAL )
92 0.5%

26 35 65 34 65 56 66 57 ID : ID ( STRING ) 91 0.5%

27 35 37 65 19 56 66 57 text ID input ( STRING ) 89 0.4%

28 35 65 42 65 ID . ID 89 0.4%

29 35 37 65 63 44 66 text ID INTEGER LITERAL = STRING 89 0.4%

30 35 37 65 49 19 56 66 57 text ID + input ( STRING ) 89 0.4%

31 35 39 65 42 65 42 65 42 65 use ID . ID . ID . ID 88 0.4%

32 35 38 44 65 45 65 boolean = ID >ID 87 0.4%

33 35 59 65 63 47 63 if ID INTEGER LITERAL <INTEGER LITERAL 87 0.4%

34 35 38 65 44 62 40 44 62
boolean ID = BOOLEAN LITERAL not =

BOOLEAN LITERAL
85 0.4%

35 35 65 65 66 ID ID STRING 82 0.4%

36 35 37 65 56 66 57 text ID ( STRING ) 81 0.4%

37 35 65 42 63 65 44 64 ID . INTEGER LITERAL ID = DECIMAL LITERAL 80 0.4%

38 35 37 65 50 63 44 19 56 66 57 text ID - INTEGER LITERAL = input ( STRING ) 77 0.4%

39 35 37 44 66 text = STRING 74 0.4%

40 35 37 65 44 66 text ID = STRING 73 0.4%
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C.4 Error Code 0: MISSING VARIABLE

Rank
Error

Code
Token Signature Token Map N %

1 0 1 65 output ID 2,877 23.3%

2 0 59 65 if ID 1,287 10.4%

3 0 35 65 44 65 52 65 integer ID = ID / ID 1,039 8.4%

4 0 36 65 44 18 56 36 43 65 57 number ID = cast ( number , ID ) 417 3.4%

5 0 65 44 65 ID = ID 366 3.0%

6 0 65 34 65 56 66 57 ID : ID ( STRING ) 350 2.8%

7 0 35 65 44 18 56 35 43 65 57 integer ID = cast ( integer , ID ) 286 2.3%

8 0 1 66 49 65 output STRING + ID 232 1.9%

9 0 36 65 44 65 53 65 number ID = ID mod ID 192 1.6%

10 0 59 65 44 66 if ID = STRING 181 1.5%

11 0 38 65 44 65 boolean ID = ID 140 1.1%

12 0 36 65 44 65 52 65 number ID = ID / ID 137 1.1%

13 0 1 65 49 65 output ID + ID 136 1.1%

14 0 37 65 44 65 text ID = ID 134 1.1%

15 0 20 65 say ID 124 1.0%

16 0 35 65 44 65 integer ID = ID 112 0.9%

17 0
37 65 44 66 49 65 49 66 49

65 49 66 49 65 49 66

text ID = STRING + ID + STRING + ID + STRING

+ ID + STRING
111 0.9%

18 0 1 65 51 63 49 65 output ID * INTEGER LITERAL + ID 110 0.9%

19 0 1 66 49 65 49 66 output STRING + ID + STRING 109 0.9%

20 0 65 44 65 29 65 ID = ID and ID 101 0.8%

21 0 36 65 44 65 number ID = ID 95 0.8%

22 0 65 34 65 56 65 57 ID : ID ( ID ) 94 0.8%

23 0 65 34 65 56 57 ID : ID ( ) 94 0.8%

24 0 59 65 44 63 if ID = INTEGER LITERAL 83 0.7%

25 0 25 7 65 45 63 repeat until ID >INTEGER LITERAL 69 0.6%

26 0 35 65 44 65 51 63 integer ID = ID * INTEGER LITERAL 68 0.6%

27 0
36 65 44 65 49 65 49 65 52

65
number ID = ID + ID + ID / ID 65 0.5%

28 0 59 65 48 63 if ID <= INTEGER LITERAL 65 0.5%

29 0 65 34 65 56 63 43 63 57 ID : ID ( INTEGER LITERAL , INTEGER LITERAL ) 64 0.5%

30 0 59 65 45 65 if ID >ID 63 0.5%

31 0 38 65 44 65 44 65 boolean ID = ID = ID 61 0.5%

32 0 1 65 44 66 output ID = STRING 61 0.5%

33 0 1 65 49 65 49 65 49 65 49 65 output ID + ID + ID + ID + ID 60 0.5%

34 0 28 65 return ID 60 0.5%

35 0 65 56 65 57 ID ( ID ) 59 0.5%

36 0 59 65 44 65 if ID = ID 55 0.4%

37 0 65 44 65 49 56 65 52 63 57 ID = ID + ( ID / INTEGER LITERAL ) 55 0.4%

38 0
35 65 44 65 34 65 56 63 43

63 57

integer ID = ID : ID ( INTEGER LITERAL ,

INTEGER LITERAL )
50 0.4%

39 0 36 65 44 65 51 65 number ID = ID * ID 49 0.4%

40 0 25 7 65 46 63 repeat until ID >= INTEGER LITERAL 46 0.4%
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C.5 Error Code 11: MISSING USE

Rank
Error

Code
Token Signature Token Map N %

1 11 65 65 ID ID 2,328 28.3%

2 11 65 65 44 63 ID ID = INTEGER LITERAL 1,837 22.4%

3 11 39 65 42 65 42 65 use ID . ID . ID 750 9.1%

4 11 65 65 65 65 ID ID ID ID 260 3.2%

5 11 65 65 44 66 ID ID = STRING 244 3.0%

6 11 65 65 44 63 49 63 ID ID = INTEGER LITERAL + INTEGER LITERAL 201 2.4%

7 11 65 ID 183 2.2%

8 11 65 65 44 19 56 66 57 ID ID = input ( STRING ) 180 2.2%

9 11 65 65 44 18 56 65 43 65 57 ID ID = cast ( ID , ID ) 154 1.9%

10 11 65 65 44 62 ID ID = BOOLEAN LITERAL 112 1.4%

11 11
65 65 44 18 56 35 43 19 56

66 57 57
ID ID = cast ( integer , input ( STRING ) ) 87 1.1%

12 11 35 65 44 18 56 65 43 65 57 integer ID = cast ( ID , ID ) 83 1.0%

13 11 65 65 44 65 45 65 ID ID = ID >ID 81 1.0%

14 11 65 65 65 65 65 65 ID ID ID ID ID ID 71 0.9%

15 11 36 65 44 18 56 65 43 65 57 number ID = cast ( ID , ID ) 60 0.7%

16 11 65 65 44 65 51 63 ID ID = ID * INTEGER LITERAL 57 0.7%

17 11 1 65 65 65 output ID ID ID 50 0.6%

18 11 65 65 44 64 ID ID = DECIMAL LITERAL 49 0.6%

19 11 65 65 44 18 56 35 43 65 57 ID ID = cast ( integer , ID ) 43 0.5%

20 11 61 65 17 65 class ID is ID 43 0.5%

21 11 65 65 44 63 50 63 ID ID = INTEGER LITERAL - INTEGER LITERAL 42 0.5%

22 11 65 65 44 65 ID ID = ID 35 0.4%

23 11
35 65 44 18 56 65 43 19 56

66 57 57
integer ID = cast ( ID , input ( STRING ) ) 34 0.4%

24 11 37 65 44 65 65 65 text ID = ID ID ID 34 0.4%

25 11 65 65 44 63 52 63 ID ID = INTEGER LITERAL / INTEGER LITERAL 32 0.4%

26 11 65 65 44 56 66 57 ID ID = ( STRING ) 32 0.4%

27 11 39 65 42 65 42 65 42 65 use ID . ID . ID . ID 28 0.3%

28 11 65 65 44 65 49 65 ID ID = ID + ID 24 0.3%

29 11 65 65 65 65 65 65 65 65 ID ID ID ID ID ID ID ID 24 0.3%

30 11 26 65 65 44 63 else ID ID = INTEGER LITERAL 22 0.3%

31 11 33 65 56 35 65 43 65 65 57 action ID ( integer ID , ID ID ) 21 0.3%

32 11 65 65 44 63 48 63
ID ID = INTEGER LITERAL <=

INTEGER LITERAL
21 0.3%

33 11 65 65 44 62 30 62
ID ID = BOOLEAN LITERAL or

BOOLEAN LITERAL
21 0.3%

34 11 65 65 65 ID ID ID 21 0.3%

35 11 65 44 65 65 65 ID = ID ID ID 21 0.3%

36 11 38 65 65 65 44 62 boolean ID ID ID = BOOLEAN LITERAL 21 0.3%

37 11 65 65 44 18 56 36 43 65 57 ID ID = cast ( number , ID ) 20 0.2%

38 11 65 65 44 63 51 63 ID ID = INTEGER LITERAL * INTEGER LITERAL 19 0.2%

39 11 65 65 44 62 29 62
ID ID = BOOLEAN LITERAL and

BOOLEAN LITERAL
19 0.2%

40 11 65 65 44 65 52 65 ID ID = ID / ID 18 0.2%
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C.6 Error Code 41: INPUT MISMATCH

Rank
Error

Code
Token Signature Token Map N %

1 41 511 6.5%

2 41 39 65 42 65 42 65 use ID . ID . ID 476 6.0%

3 41 66 STRING 450 5.7%

4 41 60 end 401 5.1%

5 41 1 65 output ID 333 4.2%

6 41 1 66 output STRING 298 3.8%

7 41 59 65 44 66 if ID = STRING 112 1.4%

8 41
37 65 44 19 56 65 6 65 65 42

42 42 58 57
text ID = input ( ID me ID ID . . . ) 111 1.4%

9 41 35 65 44 63 34 63 34 63
integer ID = INTEGER LITERAL :

INTEGER LITERAL : INTEGER LITERAL
73 0.9%

10 41 37 65 44 66 text ID = STRING 70 0.9%

11 41 19 66 input STRING 67 0.9%

12 41 59 65 45 65 if ID >ID 67 0.9%

13 41 37 66 text STRING 65 0.8%

14 41 65 65 ID ID 63 0.8%

15 41 61 65 class ID 63 0.8%

16 41 1 66 49 65 49 66 output STRING + ID + STRING 62 0.8%

17 41 36 65 44 18 56 36 43 65 57 number ID = cast ( number , ID ) 62 0.8%

18 41
25 56 65 52 65 49 56 65 50

63 57 24
repeat ( ID / ID + ( ID - INTEGER LITERAL ) times 58 0.7%

19 41 19 56 66 57 input ( STRING ) 52 0.7%

20 41 1 66 49 65 output STRING + ID 51 0.6%

21 41 37 65 44 19 56 66 57 text ID = input ( STRING ) 46 0.6%

22 41 65 65 65 65 65 65 65 ID ID ID ID ID ID ID 46 0.6%

23 41 5 65 44 66 elseif ID = STRING 46 0.6%

24 41 33 65 action ID 45 0.6%

25 41
35 65 44 18 56 35 43 19 56

65 65 65 34 58 57 57
integer ID = cast ( integer , input ( ID ID ID : ) ) 43 0.5%

26 41 25 65 65 63 repeat ID ID INTEGER LITERAL 43 0.5%

27 41 35 65 44 65 51 63 integer ID = ID * INTEGER LITERAL 40 0.5%

28 41 1 66 49 65 49 66 42 58 output STRING + ID + STRING . 40 0.5%

29 41 63 43 63 51 63
INTEGER LITERAL , INTEGER LITERAL *

INTEGER LITERAL
39 0.5%

30 41
37 65 44 19 56 65 65 65 65

65 65 58 57
text ID = input ( ID ID ID ID ID ID ) 34 0.4%

31 41
37 65 44 19 56 66 57 56 66

57
text ID = input ( STRING ) ( STRING ) 33 0.4%

32 41 52 51 33 65 65 65 / * action ID ID ID 33 0.4%

33 41 51 52 33 65 65 65 * / action ID ID ID 33 0.4%

34 41 35 65 44 63 43 63 43 63
integer ID = INTEGER LITERAL ,

INTEGER LITERAL , INTEGER LITERAL
32 0.4%

35 41 1 66 65 42 58 output STRING ID . 32 0.4%
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C.7 Error Code 42: LEXER NO VIABLE ALTERNATIVE

Rank
Error

Code
Token Signature Token Map N %

1 42 1 65 output ID 1,726 22.3%

2 42 65 65 ID ID 944 12.2%

3 42 35 65 44 63 integer ID = INTEGER LITERAL 347 4.5%

4 42 1 65 65 output ID ID 324 4.2%

5 42 65 65 65 ID ID ID 270 3.5%

6 42 20 65 65 say ID ID 165 2.1%

7 42 65 ID 164 2.1%

8 42 20 65 say ID 126 1.6%

9 42
37 65 44 19 56 65 65 65 65

65 65 65 65 65 57
text ID = input ( ID ID ID ID ID ID ID ID ID ) 119 1.5%

10 42 1 66 output STRING 108 1.4%

11 42 OMITTED OMITTED FOR LENGTH 99 1.3%

12 42 37 65 44 65 65 text ID = ID ID 81 1.0%

13 42 77 1.0%

14 42 36 65 44 65 65 51 65 number ID = ID ID * ID 75 1.0%

15 42 37 65 44 65 43 65 text ID = ID , ID 75 1.0%

16 42 37 65 44 19 56 66 57 text ID = input ( STRING ) 69 0.9%

17 42 65 65 65 65 65 65 65 ID ID ID ID ID ID ID 65 0.8%

18 42
65 56 63 43 63 43 63 43 63

57

ID ( INTEGER LITERAL , INTEGER LITERAL ,

INTEGER LITERAL , INTEGER LITERAL )
63 0.8%

19 42 OMITTED OMITTED FOR LENGTH 61 0.8%

20 42 65 65 65 65 ID ID ID ID 60 0.8%

21 42
65 34 65 56 65 52 65 42 65

57
ID : ID ( ID / ID . ID ) 51 0.7%

22 42 37 65 44 65 49 65 text ID = ID + ID 47 0.6%

23 42 1 65 65 65 output ID ID ID 45 0.6%

24 42 37 65 44 64 text ID = DECIMAL LITERAL 45 0.6%

25 42 37 65 44 34 text ID = : 42 0.5%

26 42 60 end 38 0.5%

27 42 1 65 65 65 65 65 65 17 66 output ID ID ID ID ID ID is STRING 37 0.5%

28 42 65 65 65 65 65 ID ID ID ID ID 33 0.4%

29 42
1 65 65 65 65 65 65 17 66 65

65 42
output ID ID ID ID ID ID is STRING ID ID . 33 0.4%

30 42 65 56 65 57 ID ( ID ) 30 0.4%

31 42 65 56 57 ID ( ) 26 0.3%

32 42 39 65 42 65 42 65 use ID . ID . ID 25 0.3%

33 42 1 output 23 0.3%

34 42 1 66 65 58 output STRING ID 23 0.3%

35 42 37 65 44 65 65 65 text ID = ID ID ID 22 0.3%

36 42
37 65 44 19 56 65 65 65 65

65 65 39 58 57
text ID = input ( ID ID ID ID ID ID use ) 22 0.3%

37 42 20 65 43 65 43 65 43 65 say ID , ID , ID , ID 21 0.3%

38 42 65 65 44 29 ID ID = and 21 0.3%

39 42 65 56 63 43 63 43 63 57
ID ( INTEGER LITERAL , INTEGER LITERAL ,

INTEGER LITERAL )
19 0.2%
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C.8 Error Code 14: DUPLICATE

Rank
Error

Code
Token Signature Token Map N %

1 14 65 65 ID ID 1,697 27.5%

2 14 35 65 44 63 integer ID = INTEGER LITERAL 1,213 19.7%

3 14 36 65 44 18 56 36 43 66 57 number ID = cast ( number , STRING ) 748 12.1%

4 14 37 65 44 66 text ID = STRING 509 8.3%

5 14 37 65 44 66 49 63 text ID = STRING + INTEGER LITERAL 196 3.2%

6 14 37 65 44 19 56 66 57 text ID = input ( STRING ) 175 2.8%

7 14 65 65 44 63 ID ID = INTEGER LITERAL 146 2.4%

8 14 35 65 44 18 56 35 43 65 57 integer ID = cast ( integer , ID ) 119 1.9%

9 14 38 65 44 62 boolean ID = BOOLEAN LITERAL 110 1.8%

10 14
35 65 44 18 56 35 43 19 56

66 57 57
integer ID = cast ( integer , input ( STRING ) ) 98 1.6%

11 14 36 65 44 18 56 36 43 65 57 number ID = cast ( number , ID ) 69 1.1%

12 14 35 65 44 65 51 63 integer ID = ID * INTEGER LITERAL 66 1.1%

13 14 65 65 44 66 ID ID = STRING 49 0.8%

14 14 1 65 65 65 output ID ID ID 48 0.8%

15 14 35 65 integer ID 43 0.7%

16 14 59 63 65 65 1 56 66 57 if INTEGER LITERAL ID ID output ( STRING ) 43 0.7%

17 14
36 65 44 18 56 36 43 19 56

66 57 57
number ID = cast ( number , input ( STRING ) ) 29 0.5%

18 14 33 65 action ID 28 0.5%

19 14 36 65 number ID 27 0.4%

20 14 36 65 44 65 51 63 number ID = ID * INTEGER LITERAL 27 0.4%

21 14 36 65 65 44 63 number ID ID = INTEGER LITERAL 27 0.4%

22 14 1 65 65 65 65 65 output ID ID ID ID ID 25 0.4%

23 14
36 65 44 56 65 49 65 52 63

49 65 52 63 57 51 63

number ID = ( ID + ID / INTEGER LITERAL + ID /

INTEGER LITERAL ) * INTEGER LITERAL
24 0.4%

24 14 36 65 44 64 number ID = DECIMAL LITERAL 24 0.4%

25 14 65 ID 24 0.4%

26 14 35 65 44 66 integer ID = STRING 20 0.3%

27 14 36 65 44 65 34 65 56 57 number ID = ID : ID ( ) 16 0.3%

28 14
37 65 65 44 66 49 65 49 66

49 65 49 66 49 65 49 66

text ID ID = STRING + ID + STRING + ID +

STRING + ID + STRING
15 0.2%

29 14 65 65 65 65 ID ID ID ID 15 0.2%

30 14 36 65 44 63 number ID = INTEGER LITERAL 14 0.2%

31 14 65 65 44 63 65 65 ID ID = INTEGER LITERAL ID ID 14 0.2%

32 14 65 44 63 ID = INTEGER LITERAL 13 0.2%

33 14 35 65 44 56 66 57 integer ID = ( STRING ) 10 0.2%

34 14 36 65 44 65 50 65 number ID = ID - ID 10 0.2%

35 14 35 65 44 65 49 65 integer ID = ID + ID 8 0.1%

36 14 37 65 44 64 text ID = DECIMAL LITERAL 8 0.1%

37 14 33 65 56 36 65 57 action ID ( number ID ) 8 0.1%

38 14 36 65 44 65 52 65 number ID = ID / ID 7 0.1%

39 14
65 34 65 56 63 43 63 57 65

65

ID : ID ( INTEGER LITERAL , INTEGER LITERAL )

ID ID
7 0.1%
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C.9 Error Code 3: MISSING METHOD

Rank
Error

Code
Token Signature Token Map N %

1 3 65 56 57 ID ( ) 1,504 37.6%

2 3 37 65 44 65 56 66 57 text ID = ID ( STRING ) 241 6.0%

3 3 65 34 65 56 66 57 ID : ID ( STRING ) 106 2.6%

4 3 65 56 63 57 ID ( INTEGER LITERAL ) 97 2.4%

5 3 1 65 34 65 56 57 output ID : ID ( ) 94 2.3%

6 3 65 56 63 43 63 57 ID ( INTEGER LITERAL , INTEGER LITERAL ) 92 2.3%

7 3 36 65 44 65 56 63 50 65 57 number ID = ID ( INTEGER LITERAL - ID ) 89 2.2%

8 3 65 56 66 57 ID ( STRING ) 87 2.2%

9 3 65 34 65 56 57 ID : ID ( ) 75 1.9%

10 3 35 65 44 65 56 57 integer ID = ID ( ) 70 1.7%

11 3 1 65 34 65 56 63 43 63 57
output ID : ID ( INTEGER LITERAL ,

INTEGER LITERAL )
68 1.7%

12 3 65 34 65 56 64 57 ID : ID ( DECIMAL LITERAL ) 63 1.6%

13 3 35 65 44 65 56 63 43 63 57
integer ID = ID ( INTEGER LITERAL ,

INTEGER LITERAL )
62 1.5%

14 3 65 56 65 57 ID ( ID ) 60 1.5%

15 3 65 34 65 56 63 57 ID : ID ( INTEGER LITERAL ) 56 1.4%

16 3
36 65 44 65 34 65 56 63 43

63 57

number ID = ID : ID ( INTEGER LITERAL ,

INTEGER LITERAL )
53 1.3%

17 3
65 34 65 56 66 43 66 43 66

43 66 43 66 43 66 43 66 57

ID : ID ( STRING , STRING , STRING , STRING ,

STRING , STRING , STRING )
52 1.3%

18 3 65 34 65 56 63 43 63 57 ID : ID ( INTEGER LITERAL , INTEGER LITERAL ) 41 1.0%

19 3
1 65 49 56 66 57 49 65 56 66

57 49 65
output ID + ( STRING ) + ID ( STRING ) + ID 41 1.0%

20 3 65 34 65 56 65 57 ID : ID ( ID ) 36 0.9%

21 3 1 65 output ID 35 0.9%

22 3 1 65 56 66 57 output ID ( STRING ) 34 0.8%

23 3 36 65 44 65 34 65 56 57 number ID = ID : ID ( ) 32 0.8%

24 3 1 65 34 65 56 63 57 output ID : ID ( INTEGER LITERAL ) 31 0.8%

25 3
35 65 44 18 56 35 43 65 56

66 57 57
integer ID = cast ( integer , ID ( STRING ) ) 31 0.8%

26 3
35 65 44 65 34 65 56 63 43

63 57

integer ID = ID : ID ( INTEGER LITERAL ,

INTEGER LITERAL )
30 0.7%

27 3 65 44 65 34 65 56 63 57 ID = ID : ID ( INTEGER LITERAL ) 27 0.7%

28 3
65 56 63 43 63 43 63 43 63

57

ID ( INTEGER LITERAL , INTEGER LITERAL ,

INTEGER LITERAL , INTEGER LITERAL )
26 0.6%

29 3 65 34 65 56 63 43 65 57 ID : ID ( INTEGER LITERAL , ID ) 22 0.5%

30 3

1 65 34 65 56 57 49 66 49 65

34 65 56 57 49 66 49 65 34

65 56 57

output ID : ID ( ) + STRING + ID : ID ( ) + STRING

+ ID : ID ( )
22 0.5%

31 3
65 34 65 56 63 43 63 43 63

57

ID : ID ( INTEGER LITERAL , INTEGER LITERAL ,

INTEGER LITERAL )
21 0.5%

32 3 65 56 63 43 63 43 63 57
ID ( INTEGER LITERAL , INTEGER LITERAL ,

INTEGER LITERAL )
21 0.5%

33 3 1 65 56 63 57 output ID ( INTEGER LITERAL ) 20 0.5%
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C.10 Error Code 12: INVALID OPERATOR

Rank
Error

Code
Token Signature Token Map N %

1 12 65 44 65 49 64 ID = ID + DECIMAL LITERAL 611 18.4%

2 12 35 65 44 64 integer ID = DECIMAL LITERAL 325 9.8%

3 12 65 65 44 66 ID ID = STRING 195 5.9%

4 12 65 65 44 63 ID ID = INTEGER LITERAL 186 5.6%

5 12 35 65 44 66 integer ID = STRING 164 4.9%

6 12 35 65 44 19 56 66 57 integer ID = input ( STRING ) 137 4.1%

7 12 37 65 44 64 text ID = DECIMAL LITERAL 117 3.5%

8 12 35 65 44 65 52 65 integer ID = ID / ID 100 3.0%

9 12 35 65 44 65 56 63 43 63 57
integer ID = ID ( INTEGER LITERAL ,

INTEGER LITERAL )
65 2.0%

10 12
35 65 44 63 44 18 56 35 43

65 57

integer ID = INTEGER LITERAL = cast ( integer , ID

)
62 1.9%

11 12 38 65 44 63 boolean ID = INTEGER LITERAL 59 1.8%

12 12 65 65 44 19 56 66 57 ID ID = input ( STRING ) 58 1.7%

13 12 65 65 44 62 ID ID = BOOLEAN LITERAL 51 1.5%

14 12 37 65 44 63 text ID = INTEGER LITERAL 49 1.5%

15 12 35 65 44 56 66 57 integer ID = ( STRING ) 47 1.4%

16 12 35 65 44 65 49 65 integer ID = ID + ID 42 1.3%

17 12 65 65 44 18 56 35 43 65 57 ID ID = cast ( integer , ID ) 41 1.2%

18 12
35 65 44 18 56 36 43 19 56

66 57 57
integer ID = cast ( number , input ( STRING ) ) 37 1.1%

19 12 36 65 44 19 56 66 57 number ID = input ( STRING ) 36 1.1%

20 12 35 65 44 65 49 65 49 65 integer ID = ID + ID + ID 33 1.0%

21 12 35 65 44 63 52 64
integer ID = INTEGER LITERAL /

DECIMAL LITERAL
23 0.7%

22 12
65 65 44 65 34 65 56 63 43

63 57

ID ID = ID : ID ( INTEGER LITERAL ,

INTEGER LITERAL )
22 0.7%

23 12 35 65 44 18 56 36 43 65 57 integer ID = cast ( number , ID ) 21 0.6%

24 12 35 65 44 63 44 63
integer ID = INTEGER LITERAL =

INTEGER LITERAL
21 0.6%

25 12 35 65 44 66 49 66 integer ID = STRING + STRING 20 0.6%

26 12 65 44 63 ID = INTEGER LITERAL 20 0.6%

27 12 65 44 65 ID = ID 19 0.6%

28 12 37 65 44 18 56 35 43 65 57 text ID = cast ( integer , ID ) 19 0.6%

29 12 35 65 44 65 56 57 integer ID = ID ( ) 16 0.5%

30 12
35 65 44 65 49 65 49 65 49

65
integer ID = ID + ID + ID + ID 15 0.5%

31 12 65 65 44 65 45 65 ID ID = ID >ID 15 0.5%

32 12 38 65 44 65 boolean ID = ID 15 0.5%

33 12 35 65 44 65 integer ID = ID 15 0.5%

34 12 38 65 44 19 56 66 57 boolean ID = input ( STRING ) 15 0.5%

35 12 65 44 65 44 56 65 52 63 57 ID = ID = ( ID / INTEGER LITERAL ) 15 0.5%

36 12 37 65 44 66 44 66 text ID = STRING = STRING 14 0.4%

37 12 36 65 44 65 49 65 49 66 number ID = ID + ID + STRING 14 0.4%

38 12 65 44 65 34 65 56 63 57 ID = ID : ID ( INTEGER LITERAL ) 13 0.4%
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C.11 Error Code 5: INCOMPATIBLE TYPES

Rank
Error

Code
Token Signature Token Map N %

1 5 59 65 44 63 47 63 if ID = INTEGER LITERAL <INTEGER LITERAL 140 9.2%

2 5 38 65 44 65 45 65 boolean ID = ID >ID 111 7.3%

3 5 1 65 output ID 91 6.0%

4 5 37 65 44 66 50 66 text ID = STRING - STRING 61 4.0%

5 5 59 65 44 63 if ID = INTEGER LITERAL 50 3.3%

6 5 59 65 47 63 if ID <INTEGER LITERAL 42 2.8%

7 5 59 65 48 63 if ID <= INTEGER LITERAL 42 2.8%

8 5 65 44 62 49 62 29 62 49 62
ID = BOOLEAN LITERAL + BOOLEAN LITERAL

and BOOLEAN LITERAL + BOOLEAN LITERAL
34 2.2%

9 5 36 65 44 65 52 65 number ID = ID / ID 31 2.0%

10 5 59 65 44 66 if ID = STRING 28 1.8%

11 5 1 65 34 65 56 63 57 output ID : ID ( INTEGER LITERAL ) 27 1.8%

12 5 59 65 44 66 30 66 if ID = STRING or STRING 24 1.6%

13 5 1 66 44 65 output STRING = ID 24 1.6%

14 5 64 47 65 47 64 DECIMAL LITERAL <ID <DECIMAL LITERAL 24 1.6%

15 5 1 65 51 65 output ID * ID 23 1.5%

16 5 59 65 45 63 if ID >INTEGER LITERAL 23 1.5%

17 5 5 65 48 63 elseif ID <= INTEGER LITERAL 22 1.4%

18 5 1 65 44 66 output ID = STRING 20 1.3%

19 5 59 65 47 65 if ID <ID 20 1.3%

20 5 38 65 44 65 47 65 boolean ID = ID <ID 18 1.2%

21 5 5 65 44 63 elseif ID = INTEGER LITERAL 18 1.2%

22 5 59 65 45 65 if ID >ID 17 1.1%

23 5 65 44 65 49 65 ID = ID + ID 16 1.1%

24 5
1 65 34 65 56 57 49 66 44 65

34 65 56 57 44 66 49

output ID : ID ( ) + STRING = ID : ID ( ) = STRING

+
16 1.1%

25 5 1 65 51 63 output ID * INTEGER LITERAL 15 1.0%

26 5 36 65 44 65 51 63 number ID = ID * INTEGER LITERAL 15 1.0%

27 5 38 65 44 63 29 63
boolean ID = INTEGER LITERAL and

INTEGER LITERAL
13 0.9%

28 5 37 65 44 66 29 66 text ID = STRING and STRING 13 0.9%

29 5 38 65 44 62 49 62
boolean ID = BOOLEAN LITERAL +

BOOLEAN LITERAL
12 0.8%

30 5 36 65 44 65 51 65 number ID = ID * ID 12 0.8%

31 5
35 65 44 65 44 63 49 65 44

65
integer ID = ID = INTEGER LITERAL + ID = ID 12 0.8%

32 5 59 65 45 63 30 65 47 63
if ID >INTEGER LITERAL or ID

<INTEGER LITERAL
11 0.7%

33 5 28 65 return ID 10 0.7%

34 5 1 65 50 65 output ID - ID 9 0.6%

35 5 35 65 44 66 50 66 integer ID = STRING - STRING 9 0.6%

36 5 1 65 29 65 output ID and ID 9 0.6%

37 5 28 65 44 65 return ID = ID 9 0.6%

38 5 65 44 66 50 66 ID = STRING - STRING 8 0.5%

39 5 35 65 44 65 45 65 integer ID = ID >ID 8 0.5%
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Niko Myller, Juha Sorva, Ahmad Taherkhani, et al. Theoretical underpinnings of computing
education research: what is the evidence? In Proceedings of the tenth annual conference on
International computing education research, pages 27–34. ACM, 2014.

[MWB99] Gail C. Murphy, Robert J. Walker, and ELA Banlassad. Evaluating emerging software de-
velopment technologies: Lessons learned from assessing aspect-oriented programming. IEEE
Transactions on software engineering, 25(4):438–455, 1999.

[New05] Mark EJ Newman. Power laws, pareto distributions and zipf’s law. Contemporary physics,
46(5):323–351, 2005.

[NPM08] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. Compiler error messages:
What can help novices? In ACM SIGCSE Bulletin, volume 40, pages 168–172. ACM, 2008.

[NTPM11] Sebastian Nanz, Faraz Torshizi, Michela Pedroni, and Bertrand Meyer. Empirical assessment
of languages for teaching concurrency: Methodology and application. In Software Engineering
Education and Training (CSEE&T), 2011 24th IEEE-CS Conference on, pages 477–481. IEEE,
2011.

[NW70] Saul B Needleman and Christian D Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of molecular biology, 48(3):443–
453, 1970.

[Oba17] Obama White House. Fact sheet: President obama announces computer science for all initia-
tive. https://obamawhitehouse.archives.gov/the-press-o�ce/2016/01/30/fact-sheet-president-
obama-announces-computer-science-all-initiative-0, 2016 (accessed 31 October 2017).

150



[Ora17] Oracle Corporation. Secure coding guidelines for java se.
http://www.oracle.com/technetwork/java/seccodeguide-139067.html, 2017 (accessed 28
September 2017).

[PAT11] Victor Pankratius and Ali-Reza Adl-Tabatabai. A study of transactional memory vs. locks
in practice. In Proceedings of the twenty-third annual ACM symposium on Parallelism in
algorithms and architectures, pages 43–52. ACM, 2011.

[PBDP+14] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Michele Lanza.
Mining stackoverflow to turn the ide into a self-confident programming prompter. In Proceed-
ings of the 11th Working Conference on Mining Software Repositories, pages 102–111. ACM,
2014.

[PBL+16] Thomas W Price, Neil CC Brown, Dragan Lipovac, Ti↵any Barnes, and Michael Kölling.
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